
COMPASS
Correctness, Modeling, and Performance of Aerospace Systems

COMPASS User Manual
Version 3.0.1

Prepared by
Fondazione Bruno Kessler
RWTH Aachen University

Contents

1 Introduction 5

2 Terminology 6

3 Installation 7
3.1 Prerequisites . 7
3.2 COMPASS Toolset Packages . 8
3.3 Obtaining a Copy of the Toolset . 8
3.4 Installation of the COMPASS Toolset . 8
3.5 Running the Toolset . 8

4 Examples 11
4.1 Summary of Examples . 11
4.2 Description of Examples . 12

4.2.1 adder . 12
4.2.2 battery sensor . 13
4.2.3 blocks world . 13
4.2.4 cruise . 13
4.2.5 CSSP EagleEye . 13
4.2.6 engine . 14
4.2.7 features . 14
4.2.8 gps . 14
4.2.9 new semantics . 14
4.2.10 power . 14
4.2.11 sensorfilter . 15
4.2.12 smartgrid . 15
4.2.13 starlight . 15
4.2.14 time until . 15
4.2.15 VBE Proc . 15

5 The SLIM Language in a Nutshell 16
5.1 Nominal Behavior . 16

5.1.1 Notes on Developing Timed Specifications 20
5.2 Error Behavior . 24
5.3 Fault Injection . 25

1

6 Handling Models 27
6.1 Loading Models . 27
6.2 Saving Models . 28
6.3 Defining Fault Injections . 28

7 Properties 31
7.1 Atomic Propositions . 31
7.2 CSSP . 32
7.3 Property Patterns . 35

7.3.1 Pattern classes . 36
7.4 Generic Properties . 36

7.4.1 Propositional Properties . 36
7.5 GUI-Based Property Management . 37

8 Mission Specification 42
8.1 Loading and Saving the Mission Specification 43

8.1.1 Phases and Op-modes names . 43
8.1.2 S/C Configurations associated to Op-modes 44
8.1.3 Phase/Op-mode Combination via Observable 45

9 Analyses 47
9.1 Support of Aspects w.r.t. Analyses . 47
9.2 Validation . 47

9.2.1 Contract Validation . 47
9.2.2 Contract Refinement . 51
9.2.3 Contract Tightening . 52

9.3 TFPG . 54
9.3.1 Introduction to TFPGs . 54
9.3.2 Behavioral Validation . 55
9.3.3 Synthesis . 57
9.3.4 Effectiveness Validation . 59

9.4 Verifying Functional Correctness . 60
9.4.1 Trace Inspection . 61
9.4.2 Model Simulation . 64
9.4.3 Deadlock Checking . 69
9.4.4 Model Checking . 70
9.4.5 Zeno Analysis . 77
9.4.6 Time Divergence Analysis . 78
9.4.7 Contract-based Verification . 79

9.5 Performability Analysis . 79
9.5.1 Relation to Fault Tree Generation . 83
9.5.2 Choice of Duration Parameter . 83
9.5.3 Choice of Error bound Parameter for IMCA 83
9.5.4 Numerical Stability for MRMC . 84
9.5.5 Simulation . 84

9.6 Safety and Dependability Analysis . 85
9.6.1 Fault Tree Generation . 86

2

9.6.2 Dynamic Fault Tree Generation . 88
9.6.3 Probabilistic Fault Tree Generation . 88
9.6.4 Failure Modes and Effect Analysis . 89
9.6.5 Fault Tolerance Evaluation . 93
9.6.6 (Dynamic) Fault Tree Evaluation . 94
9.6.7 Criticality Evaluation . 97
9.6.8 (Dynamic) Fault Tree Verification . 98
9.6.9 Hierarchical Fault Tree Generation . 98

9.7 FDIR: Fault Detection, Isolation and Recovery 100
9.7.1 Fault Detection Analysis . 101
9.7.2 Fault Isolation Analysis . 102
9.7.3 Fault Recovery Analysis . 104
9.7.4 Diagnosability Analysis . 106
9.7.5 Fault Coverage Analysis . 109

10 Support 112

A CLI scripts 115
A.1 Scripts . 115

A.1.1 Syntax Check . 115
A.1.2 Model Checking . 116
A.1.3 Model Simulation . 117
A.1.4 Deadlock Checking . 118
A.1.5 Fault Tree Generation . 119
A.1.6 Failure Modes and Effects Analysis . 120
A.1.7 Diagnosability Check . 121
A.1.8 Fault Detection Analysis . 122
A.1.9 Fault Isolation Analysis . 123
A.1.10 Fault Recovery Analysis . 124
A.1.11 Fault Coverage Analysis . 124
A.1.12 Zeno Detection . 125
A.1.13 Time Divergence Detection . 126
A.1.14 Performability Evaluation . 128
A.1.15 Fault Tolerance Evaluation . 129
A.1.16 Dynamic Fault Tree (and Criticality) Evaluation 130
A.1.17 Dynamic Fault Tree Verification . 131
A.1.18 Monte Carlo Simulation . 132
A.1.19 Validation of Formal Properties . 133
A.1.20 Tighten a Contract Refinement . 134
A.1.21 Check Contracts Composite Implementation 135
A.1.22 Check Contracts Monolithic Implementation 136
A.1.23 Check Contracts Refinements . 136
A.1.24 Generate Hierarchical Fault Tree . 137
A.1.25 TFPG Syntax Check . 138
A.1.26 TFPG Behavioral Validation . 138
A.1.27 TFPG Synthesis . 139
A.1.28 TFPG Effectiveness Validation . 140

3

A.1.29 Advanced Script Options . 141

4

Chapter 1

Introduction

This document provides the manual for the COMPASS (Correctness, Modeling, and Perfor-
mance of Aerospace Systems) toolset. It is organized as follows:

• Chapter 2 lists the (abbreviated) terms that are applied in this document.

• Chapter 3 specifies the necessary hardware/software configuration needed to run the
COMPASS toolset and the required installation steps.

• Chapter 4 describes the examples contained in the distribution.

• Chapter 5 explains the key features of the System-Level Integrated Modelling (SLIM).
language that is employed for specifying systems.

• Chapter 6 describes the initial user action, the loading of SLIM files.

• Chapter 7 explains how to specify system properties.

• Chapter 8 describes the mission specification.

• Chapter 9 details the analysis features provided by the toolset.

• Chapter 10 describes how software maintenance and support is organized.

5

Chapter 2

Terminology

The following acronyms are used or are relevant in this document.

AADL Architecture Analysis and Design Language
BDD Binary Decision Diagram
BMC Bounded Model Checking
CLI Command-Line Interface
COMPASS Correctness, Modeling, and Performance of Aerospace Systems
CSL Continuous Stochastic Logic
CSSP Catalogue of System and Software Properties
CTL Computation Tree Logic
ECSS European Cooperation for Space Standardization
EMA Error Model Annex
ESA European Space Agency
FDIR Fault Detection, Identification, and Recovery
FMEA Failure Modes and Effects Analysis
FTA Fault Tree Analysis
GUI Graphical User Interface
LTL Linear Temporal Logic
NuSMV New Symbolic Model Verifier
OCRA Othello Contracts Refinement Analysis
RAMS Reliability, Availability, Maintainability and Safety engineering
SAE International Society of Automotive Engineers
SAT Satisfiability
SLIM System-Level Integrated Modeling
SMT Satisfiability Modulo Theory

6

Chapter 3

Installation

This chapter describes the necessary hardware/software configuration needed to run the COM-
PASS Toolset and how to stay up to date with the latest updates.

3.1 Prerequisites

The COMPASS toolset is developed to target Ubuntu Linux 16.04. It is advised to have a
fresh copy of this operating system installed before proceeding with the installation of the
COMPASS toolset. In addition to a freshly installed Ubuntu 16.04, the following packages are
also needed for running the toolset:

• python-glade2

• python-gtk2

• python-matplotlib

• python-networkx

• python-lxml

• python-nose

• python-pygraphviz

• python-setuptools

• python-tk

• python-tornado

• python-pygoocanvas

It is known that the toolset runs on other Linux distributions other than Ubuntu 16.04, as
long as the above library versions and packages are installed.

7

November 8, 2018 COMPASS Toolset User Manual 8

3.2 COMPASS Toolset Packages

The COMPASS Toolset is made of:

• One main package called compass-tools-<yyyymmdd>. The package provides the core
COMPASS application, distributed with an open source license which allow for redis-
tributing it (with limitations, see the COMPASS General Public License for details.)

• One optional package called compass-addons-noredist-<yyyymmdd>. This package
provides additional programs in binary format, which enable all the available features of
the COMPASS Toolset. This package is distributed with a non open source license which
does not allow for redistributing it, and adds some other restrictions, like for example
commercial use. See the associated license for all details.

Notice that the additional package is not required, but some features will not be available
if not installed. The COMPASS GUI will warn the user if it cannot be found when starting.
In this manual, it is assumed that both the packages have been installed.

3.3 Obtaining a Copy of the Toolset

The most recent stable release of the COMPASS toolset is available on the COMPASS project
website: http://www.compass-toolset.org. These releases are for ESA member states only.
For non-ESA member states, please contact us using the information found on that website.

3.4 Installation of the COMPASS Toolset

After downloading the package compass-tools-<yyyymmdd>.tar.gz (and optionally the ad-
ditional package compass-addons-noredist-<yyyymmdd>.tar.gz), you have to unpack it
(them). From a Linux terminal:

$> cd <the download directory>

$> tar xvfz compass-tools-<yyymmdd>.tar.gz

If downloaded, unpack also the additional package, in the same directory where the former
package was unpacked:

$> tar xvfz compass-addons-noredist-<yyyymmdd>.tar.gz

Note that these commands can be run as a normal user, there is no need for administrative
rights to execute them.

At this point the downloaded package(s) can be removed.

3.5 Running the Toolset

There are two interfaces to the COMPASS Toolset, a command-line interface (CLI) and the
graphical user interface (GUI). The command-line interface is primary used for regression
testing purposes. For all other purposes, we recommend you to use the graphical user interface.

http://www.compass-toolset.org

November 8, 2018 COMPASS Toolset User Manual 9

Graphical User Interface The executable of the GUI can be found in the scripts. The
executable can be run as follows:

$> python scripts/compassw.py

A new window appears, which is the main window of the COMPASS toolset (see Figure 3.1).
The GUI executable accepts also a set of command line options, which are:

$> python scripts/compassw.py [--help|-h] \

[--wordsize|-w word_size] \

[--file|-f base_file_name] \

[--dir|-d out_dir_name] \

[--level|-l logging_sys_level] \

[--property|-p properties_file_name] \

[--mission|-m mission_file_name] \

[--tfpg|-t tfpg_file_name] \

[--slim_assoc|-a tfpg_assoc_file_name] \

[--finite_states] \

[slim-files...]

help,h prints the usage help

-w word size sets the width of signed words used to represent int slim type data sub-
components. Default is 32 (bits).

-f base file name specifies the base file name of the files to be generated. Default value is
the first input file without extension.

-d out dir name specifies the name of the directory in which to store output and logging
files.

-l logging sys level sets the minimum system logging level.

-p properties file name loads the specified XML file containing the properties. The exten-
sion for properties file is .propxml

-m mission file name loads the specified XML file containing the mission specification. The
extension for mission file is .mxml

-t tfpg file name loads the specified XML file containing the TFPG definition. The exten-
sion for tfpg file is .txml

-a tfpg assoc file name loads the specified XML file containing the TFPG slim associations.
The extension for tfpg slim associaions file is .axml

–finite states maps integers to words.

slim-files... One or more slim file names separated by spaces, to be loaded initially.

Default values of these and further options can be set by editing entries in file compass/options.py
before launching the GUI executable.

November 8, 2018 COMPASS Toolset User Manual 10

Figure 3.1: Main window of the COMPASS Toolset

Command Line Interface The scripts for the command-line interface are found in
scripts. By running the script with --help, you will get a list of options. See an example
below:

$> python scripts/evaluate_performability.py --help

Usage: evaluate_performability.py [options] slim-files

Options:

--version show program’s version number and exit

-h, --help show this help message and exit

...

Chapter 4

Examples

This chapter briefly describes the examples that are contained in the COMPASS distribution,
and their characteristics.

The examples can be found in documentation/examples.

4.1 Summary of Examples

We characterize the examples in terms of some metrics, such as size, complexity and the
features they cover. This characterization may help the reader select a model for a specific
purpose. The metrics are shown in the table below; for each example, we show its size (number
of components, number of data ports), type (discrete, timed, infinite, continuous), features
(presence of probabilistic error models, fault injections, contracts), and complexity1. Multiple
labels refer to different models in the same example family.

Table 4.1: Characterization of examples.

Model Size Type Features Complexity
#Comp #Data Prob F.Ext. Contr.

adder 7-11 13-20 discrete,
timed

N Y N low, medium

battery sensor 8-11 20-24 discrete,
timed,
continu-
ous

N Y N medium

blocks world 5-11 10-14 timed, in-
finite

N Y N medium, high

cruise 7 17 timed,
infinite,
continu-
ous

N N N medium

CSSP EagleEye 4 10 discrete N N Y medium
engine 5 19 infinite Y N N medium

1Complexity characterization is provided as a simple qualitative performance indication, for user’s guidance
only. Performance may vary depending on the analysis that is being run.

11

November 8, 2018 COMPASS Toolset User Manual 12

Table 4.1: Characterization of examples.

Model Size Type Features Complexity
#Comp #Data Prob F.Ext. Contr.

features 1-5 0-5 discrete,
timed,
infinite

N N N low

gps 1-7 2-6 timed, in-
finite

Y Y N medium

new semantics 3-5 0 discrete N N N low
power 1 4 continuous Y Y N low
sensor filter 4-5 8-13 infinite,

continu-
ous

Y Y N medium

smartgrid 1 28 infinite N N N medium
starlight 6 50 timed, in-

finite
N N Y high

time until 1-3 1-6 infinite N N Y low
VBE Proc 3 4 timed N N Y low

4.2 Description of Examples

In this section we briefly describe the individual example families.

4.2.1 adder

The adder example is a simple example of an adder that computes the sum (modulo two)
of some random input bits. It features the following components types: a component that
generates the random inputs, a bit component that propagates its random input, an adder
computing the sum of its input bits, and a scheduler that schedules the execution of the said
components.

The example in available in the following variants:

• adder_discrete: discrete version with 2 bits

• adder_discrete_3_bits: discrete version with 3 bits

• adder_timed: timed version with 2 bits

The timed version encodes a timer, and explicitly forces the adder component to be trig-
gered after a time delay (two similar versions are provided, one with time units and one
without them).

The following faults are modeled: output of a bit may be inverted, output of the adder
may be stuck at zero or one.

November 8, 2018 COMPASS Toolset User Manual 13

4.2.2 battery sensor

The battery sensor is a system featuring two generators, a pair of identical batteries and
two sensors. The sensors provide some critical reading for the system, and it is therefore
fundamental that, at any time, at least one of them provides a correct reading. In order to
be able to power both sensors in case of failure of the generators, the sensors are connected
to the batteries. The redundancy is intended to provide robustness in case of faults of the
generators and/or of the batteries. Finally, the system may be re-configured dynamically – if
a battery fails, the other battery may be connected to both sensors simultaneously.

The example is described in more detail in the COMPASS tutorial [7].
The example is available in the following variants:

• system_discrete_simple, system_discrete : discrete version

• system_discrete_fdir: discrete version with FDIR component

• system_hybrid_1, system_hybrid_2: hybrid versions

• system_contracts: version with contracts

• system_reactive: reactive version for probabilistic analyses

In the hybrid models, the charge level of the batteries is modeled with a hybrid dynamics.
The following faults are modeled: failure of a generator (no power), failure of a sensor (no

reading); the batteries discharge whenever the corresponding generators fails.

4.2.3 blocks world

The blocks world example encodes a rail containing three sliding blocks. Each block has a
letter, ”A”, ”B”, or ”C” and the goal is to build a target word; in this case ”ABC”. To do so,
we can control each rail independently, and build a suitable conformant plan.

The example is available in the following variants:

• blocks_world: timed version

• blocks_world_fdir: timed version with FDIR component

The variant with FDIR extends the basic model by combining it with an executor (which
derives from the fdir) of the plan.

4.2.4 cruise

This example represents a redundant cruise control system for a car. It simply controls the
speed of a car by accelerating, braking or staying. It is composed of two cruise control systems
that are activated alternatively if a failure occurs in one of the two.

4.2.5 CSSP EagleEye

This example represents a simplified model of a satellite taking picture of the Earth. Its
purpose is to exemplify the usage of the CSSP properties.

November 8, 2018 COMPASS Toolset User Manual 14

4.2.6 engine

This example represents a 4-cylinder two-stroke car engine model. It models how fuel is
transformed into power (in Newtons) and how that results in driven kilometers. One of a
paired cylinder is required to work in order to have enough momentum to rotate the axis.

4.2.7 features

The features folder contains simple examples used to illustrate specific features of the SLIM
language, such as clocks, event data ports, broadcast communication, tuple data types, con-
stant, Zeno behaviors.

4.2.8 gps

The GPS example is a simplified representation of an on board GPS that, when activating,
performs some initialization, then acquires the signal before becoming enabled.

The example is available in the following variants:

• gps_clocks: timed version

• gps_delays: version with integer variables to model delays

• gps_fdir: version with FDIR component

• gps_lra: version with transient failures

• gps_nondet: non-deterministic version

• gps_timescale: version with timescales

These model features several different variants of failure specifications. For all models, the
GPS may lose the signal at any point in 98/255 time due to any type of failure: a transient
failure, which recovers automatically, a permanent failure, which can never be recovered from,
and a hot failure, which recovers after a system reset. If at any point in time the GPS loses
signal, it will go into a failure state where it may retry to recover the signal, but remains in
the failure mode if that is not possible (due to a permanent failure).

4.2.9 new semantics

This folder contains a few examples that illustrate features covered by the new semantics of
SLIM 3.0.

4.2.10 power

The power example is a simple system, in which two batteries are used to charge the voltage
of a Power system. A battery may die, providing a zero output voltage.

November 8, 2018 COMPASS Toolset User Manual 15

4.2.11 sensorfilter

The sensorfilter example represents an acquisition system composed of sensors, filters and a
monitor component. The system reads data from the sensors, filters it and forwards it via a
value port, while the monitor observes the data values.

The example is available in the following variants:

• sensorfilter: version with integer variables

• sensorfilter-deadlockfree: version with integer variables, without deadlocks

• sensorfilter-hybrid: hybrid version

The following faults are modeled: wrong output of a sensor, wrong output of a filter.

4.2.12 smartgrid

The smartgrid model contains 2 prosumer (producer + consumer) components and one smart
grid component. It describes the negotiation between the prosumers and the samrt grid for
planning energy exchanges of the next day. The model features real variables.

4.2.13 starlight

The starlight example models the Starlight Interactive Link, which is a dispatching device
developed by the Australian Defense Science and Technology Organization to allow users to
esabilish simultaneous connections to high-level (classified) and low-level networks. The idea
is that the device acts as a switch that the user can control to dispatch the keyboard output
to either a high-level server or to a low-level server. The user can use the low-level server to
browse the external world, send messages, or have data sent to the high-level server for later
use. The model features contract specification.

4.2.14 time until

This folder contains two simple examples illustrating the use of the time_until construct
within contracts.

4.2.15 VBE Proc

This model represents a voice service backend that is used as interface for secure communica-
tions. It uses two modules to implement a system that sends a ping and waits for response.
The model features contract specification.

Chapter 5

The SLIM Language in a Nutshell

This section gives a short overview of the System-Level Integrated Modeling (SLIM) language.
For the full specification refer to [12]. It has been designed to provide a cohesive and uniform
approach to model heterogeneous systems, consisting of software (e.g., processes and threads)
and hardware (e.g., processors and buses) components, and their interactions. Furthermore,
it has been drafted with the following essential features in mind:

• Modeling both the system’s nominal and non-nominal behavior. To this aim, SLIM
provides primitives to describe software and hardware faults, error propagations (that
is, turning fault occurrences into failure events), sporadic (transient) and permanent
faults, and degraded modes of operation (by mapping failures from architectural to
service level).

• Modeling (partial) observability and the associated observability requirements. These
notions are essential to deal with diagnosability and Fault Detection, Isolation and Re-
covery (FDIR) analyses.

• Specifying timed and hybrid behavior. In particular, in order to analyse continuous phys-
ical systems such as mechanics and hydraulics, the SLIM language supports continuous
real-valued variables with (linear) time-dependent dynamics.

• Modeling probabilistic aspects, such as random faults, repairs, and stochastic timing.

These features combined with a formal interpretation make SLIM suitable for specifying and
reasoning about system properties from several perspectives, namely: functional correctness,
in particular the case of degraded hardware operation; safety and dependability; diagnosability
and FDIR; and performability, the system’s performance under degraded operation.

A complete SLIM specification consists of three parts, namely a description of the nominal
behavior, a description of the error behavior and a fault injection specification that describes
how the error behavior influences the nominal behavior. These three parts are discussed in
order below.

5.1 Nominal Behavior

A SLIM model is hierarchically organized into components, distinguished into software (pro-
cesses, threads, data), hardware (processors, memories, devices, buses), and composite com-
ponents (called systems). Components are defined by their type (specifying the functional

16

November 8, 2018 COMPASS Toolset User Manual 17

interfaces as seen by the environment) and their implementation (representing the internal
structure).

Throughout the rest of this section, a power system will be used as an example. It comprises
two batteries and a monitor that continuously checks the output voltages of the batteries, see
also [1].

The monitor component checks the current voltage level and raises an alarm if it falls
below a critical threshold of 4.5 [volts]. Its specification is shown in Figure 5.1. It consists of
a component type Monitor and component implementation Monitor.Imp.

The component type describes the ports through which the component communicates.
For example, the type interface of Figure 5.1 features two ports, namely an incoming data
port voltage which is the input voltage to monitor, and an outgoing data port alert which
indicates that the voltage is below the threshold.

The component implementation defines its subcomponents, their interaction through (event
and data) port connections, the (physical) bindings at runtime, configurations and behavior.
In the example of Figure 5.1, a single connection is defined, in this case a so-called data flow.
A flow establishes a direct dependency between an outgoing data port of a component and
(some of) its incoming data ports, meaning that a value update of one of the given incoming
data ports immediately causes a corresponding update of the outgoing data port. In this
example, the data port alert will be set to the value of the expression (voltage < 4.5).

device Monitor

features

voltage: in data port real;

alert: out data port bool;

end Monitor;

device implementation Monitor.Imp

connections

flow (voltage < 4.5) -> alert;

end Monitor.Imp;

Figure 5.1: Specification of the Monitor.

The power system itself is composed of two batteries and the monitor. An important fea-
ture is used here: mode configurations. In this example, two modes (primary and backup)
define the possible configurations of the power system, see Figure 5.2. Furthermore, subcom-
ponents are being defined, in this case a single monitor mon and two batteries batt1 and
batt2.

Mode transitions may give rise to modifications of a component’s configuration: subcompo-
nents can become (de-)activated and port connections can be (de-)established. This depends
on the in modes clause, which can be declared along with port connections and subcompo-
nents. In the example presented in Figure 5.2, the two instances of the battery device are
being respectively active in the primary and the backup mode. The mode switch that initi-
ates reconfiguration is triggered by an empty event arriving from the battery that is currently
active.

A mode transition is of the form m -[e]-> m′. It asserts that the component can evolve

November 8, 2018 COMPASS Toolset User Manual 18

system Power

features

alert: out data port bool;

end Power;

system implementation Power.Imp

subcomponents

batt1: device Battery.Imp {Accesses => (reference(myBus));}

in modes (primary);

batt2: device Battery.Imp {Accesses => (reference(myBus));}

in modes (backup);

mon: device Monitor.Imp {Accesses => (reference(myBus));};

myBus: bus Bus;

connections

port batt1.voltage -> mon.voltage in modes (primary);

port batt2.voltage -> mon.voltage in modes (backup);

port mon.alert -> alert ;

port mon.alert -> batt1.tryReset in modes (primary);

port mon.alert -> batt2.tryReset in modes (backup);

modes

primary: initial mode;

backup: mode;

primary -[batt1.empty] -> backup;

backup -[batt2.empty] -> primary;

end Power.Imp;

bus Bus

end Bus;

Figure 5.2: The Power System.

from mode m to mode m′ on the occurrence of event e (the trigger event).The event e has to
be reference an in event port of the component, or and out event port of a subcomponent.

In general, the mode transition system – basically a finite-state automaton – describes how
the component evolves from mode to mode while receiving events.

The behavior of a component after a re-activation (that is, an activation following a pre-
vious de-activation) depends on the definition of its starting mode. If it is declared using the
initial attribute (such as mode primary of the Power component in Figure 5.2), then mode
history is supported, that is, after re-activation the component resumes its operation without
changing its mode or the values of its data elements. In contrast, the activation attribute
indicates that the component is to be reset to the starting mode, using the default values for
its data elements.

Finally, the battery device is presented in Figure 5.3. An important feature presented
here is the use of states, which describe the behavior of a component (as opposed to its
configuration).

The behavior is described by states, possibly timed or hybrid, and transitions between

November 8, 2018 COMPASS Toolset User Manual 19

device Battery

features

empty: out event port;

tryReset: in data port bool {Default => "false";};

voltage: out data port real {Default => "6.0";};

end Battery;

device implementation Battery.Imp

subcomponents

energy : data continuous {Default => "1.0";};

states

charged: activation state

while energy ’ = -0.02 and energy >= 0.2;

depleted: state while energy ’ = -0.03 and energy >= 0.0;

transitions

charged -[then voltage := 2.0* energy +4.0]-> charged;

charged -[reset when tryReset]-> charged;

charged -[empty when energy <= 0.2]-> depleted;

depleted -[then voltage := 2.0* energy +4.0]-> depleted;

depleted -[reset when tryReset]-> depleted;

end Battery.Imp;

Figure 5.3: Specification of a Battery Component.

states, which can be spontaneous or triggered by any port event. For example, the implemen-
tation of Figure 5.3 specifies the battery to be in the charged state whenever activated, with
an energy level of 100%. This level is continuously decreased by 2% (of the initial amount)
per time unit (energy’ denotes the first derivative of energy) until a threshold value of 20% is
reached, upon which the battery changes to the depleted state. This state transition triggers
the empty output event, and the loss rate of energy is increased to 3%. Moreover, the voltage
value is regularly computed from the energy level (ranging between 6.0 and 4.0 [volts]) and
made accessible to the environment via the corresponding outgoing data port. In addition, the
battery listens to the tryReset port to decide when a reset operation should be performed
in reaction to faulty behavior (see the description of error models below).

The behavior of the system also describes invariants on the values of data components
(such as “energy >= 0.2” in state charged) restrict the residence time in a state. Trajectory
equations (such as the one associated with energy’) specify how continuous variables evolve
while residing in a state. This is akin to timed and hybrid automata [9]. Here we assume that
all invariants are given by Boolean expressions over data subcomponents and constants where
each arithmetic subexpression is linear. Moreover we constrain the derivatives occurring in
trajectory equations to real constants, i.e., the evolution of continuous variables is described
by linear functions.

It should also be noted that the charged state in Figure 5.3 is an activation state,
which, like modes, indicates that upon (re-)activation the Battery component is reset, thus
the model assumes that batteries will be recharged upon re-activation.

A state transition is of the form s -[e when g then f]-> s′. It asserts that the component

November 8, 2018 COMPASS Toolset User Manual 20

can evolve from state s to state s′ on the occurrence of event e (the trigger event) provided the
guard g, a Boolean expression that may depend on the component’s (discrete and continuous)
data elements, holds. Here “data elements” refers to both (incoming and outgoing) data ports
and data subcomponents of the respective component. On transiting, the effect f which may
update data subcomponents or outgoing data ports (like voltage) is applied. The presence
of event e, guard when g and effect then f is optional.

Important: States and modes cannot be mixed. Furthermore, it is not possible to de-
fine states for composite components (that is, any implementation that contains a non-data
subcomponent).

5.1.1 Notes on Developing Timed Specifications

This section identifies three potential problems that have to be avoided when developing SLIM
specifications of timed systems. They can all be illustrated by the simple component definition
template that is shown in Figure 5.4.

system Timed

end Timed;

system implementation Timed.Imp

subcomponents

t0: data clock;

t1: data clock;

states

m0: initial state while t0 <= b;

m1: state while t1 <= d;

transitions

m0 -[when t0 >= a then t1 := 0]-> m1;

m1 -[when t1 >= c then t0 := 0]-> m0;

end Timed.Imp;

Figure 5.4: A Timed Component Template.

In essence, it implements a mode transition loop of the form m0 → m1 → m0. This loop is
governed by two timers, t0 and t1, whose behavior is determined by two parameters each: the
combination of the mode invariant of m0 and of the outgoing transition guard expresses that
this transition can (only) be taken in time interval [a, b], while the conditions on t1 impose
that transition m1 → m0 is (only) enabled in interval [c, d]. Depending on the choice of values
for those parameters, the following effects are possible.

Zeno Cycles

Description The notion of “Zeno behavior” refers to system computations involving an
infinite number of discrete (i.e., mode transition) steps within a bounded period of time.
This contradicts the natural assumption that only finitely many events can happen in a finite
amount of time, which is reasonable for any realistic system. Zeno behavior can always be
traced back to a cycle in the mode transition system of a component such that the delay to

November 8, 2018 COMPASS Toolset User Manual 21

take a full round of the cycle is zero, or can become arbitrarily small, so that the final sum
of all delays can be finite. Such a cycle is named after Zeno, the Greek philosopher of around
500 BC., who was the author of a number of paradoxes (such as the paradox of Achilles and
the tortoise).

Example. In Figure 5.4, Zeno behavior can occur when a = c = 0. This means that the
cycle m0 → m1 → m0 can be taken infinitely often within a bounded period of time (in fact, it
can be executed without any time passing).

Avoidance. It must be guaranteed that the overall system does not give rise to an infinite
sequence of mode transitions in which time converges to a bounded value. This can be ensured
by requiring that, for every component of the system and on each cycle in the mode transition
diagram of that component, there is a clock variable t that is reset, and that occurs in a
transition guard of the form t > k or t >= k, where k is a positive constant. (These two actions
do not necessarily have to occur in the same transition.) In the example this is ensured if
a > 0 or c > 0.

Note that both conditions are mandatory. If the reset is absent, then once the guard is
met it will stay enabled even if no time passes. Conversely, only resetting the clock does not
require time to pass if the guard is absent. Also note that the clock reset/guard combination
is in particular required for self loops, i.e., direct transitions from a mode to itself.

For a composite system of components, Zeno cycles are only possible if at least one of the
components exhibits this behavior in isolation. In other words, the absence of Zeno cycles in
each single component excludes Zeno cycles in the overall system behavior. In that sense, the
property can be analyzed locally.

However note that this condition is sufficient but not necessary. Zeno behavior of the
overall system can also be eliminated by synchronizing a component that exhibits Zeno cycles
with one that does not, as in the example shown in Figure 5.5. Components without clocks
(and with mode transition cycles), such as Untimed in this example, always exhibit Zeno
behavior and therefore have to be synchronized to avoid this problem.

Timelocks

Description. In general, timelocks are caused by contradicting restrictions in the form of
mode triggers, invariants or guards. In the simplest case, they can be localized in a single mode
transition of a component. In more complicated settings, they are due to the synchronization
between several components.

Example. The simplest form of timelock can be represented by a transition of the form
m -[when false]->n (if no other outgoing transition is enabled in m). In Figure 5.4, a
timelock occurs when [a, b] = ∅, e.g., when a = 2 and b = 1. The same is true when [c, d] = ∅.

Avoidance. The main problem with timelocks is that the corresponding analysis is non-
compositional: the combination of two (or more) subsystems without timelocks can result in
time-locking behavior, as shown in Figure 5.6. Here, both subsystems are free from timelocks.
However after composition, the timing restrictions (output from Timed1 in interval [1, 2],

November 8, 2018 COMPASS Toolset User Manual 22

system Synchro

end Synchro;

system implementation Synchro.Imp

subcomponents

timed: system Timed {Accesses => (reference(mybus));};

untimed: system Untimed {Accesses => (reference(mybus));};

mybus: bus Bus;

connections

port timed.sync -> untimed.sync;

end Synchro.Imp;

system Timed

features

sync: out event port;

end Timed;

system implementation Timed.Imp

subcomponents

t: data clock;

states

m0: initial state while t <= 2;

transitions

m0 -[sync when t >= 1 then t := 0]-> m0;

end Timed.Imp;

system Untimed

features

sync: in event port;

end Untimed;

system implementation Untimed.Imp

modes

n0: initial mode;

n0 -[sync]-> n0;

end Untimed.Imp;

bus Bus

end Bus;

Figure 5.5: Avoidance of Zeno Cycles by Synchronization.

input to Timed2 in interval [3, 4]) exclude synchronization and thus cause a timelock. Note
that untimed deadlocks can be considered as a special case of timelocks.

In summary, it is not easy to cope with timelocks. In fact, they can even be part of the
expected system behavior. This applies in situations where one wants to show that under the
given timing restrictions, the system activities cannot be scheduled in such a way that these
restrictions are met.

November 8, 2018 COMPASS Toolset User Manual 23

system TimeLock

end TimeLock;

system implementation TimeLock.Imp

subcomponents

timed1: system Timed1 {Accesses => (reference(mybus));};

timed2: system Timed2 {Accesses => (reference(mybus));};

mybus: bus Bus;

connections

port timed1.sync -> timed2.sync;

end TimeLock.Imp;

system Timed1

features

sync: out event port;

end Timed1;

system implementation Timed1.Imp

subcomponents

t: data clock;

states

m0: initial state while t <= 2;

transitions

m0 -[sync when t >= 1 then t := 0]-> m0;

end Timed1.Imp;

system Timed2

features

sync: in event port;

end Timed2;

system implementation Timed2.Imp

subcomponents

t: data clock;

states

n0: initial state while t <= 4;

transitions

n0 -[sync when t >= 3 then t := 0]-> n0;

end Timed2.Imp;

bus Bus

end Bus;

Figure 5.6: A Time Lock Caused by Synchronization.

Time Divergence

Description. The notion of time divergence refers to the situation that there exists a com-
putation trace on which a clock may grow arbitrarily.

November 8, 2018 COMPASS Toolset User Manual 24

Example. In Figure 5.4, time divergence occurs when both transitions are enabled infinitely
often and when one of the timer resets is missing. This is the case, for example, if both the
effect t1 := 0 in the transition from m0 to m1 and the mode invariant t1 <= d of m1 are
removed from the specification.

Avoidance. Time divergence can easily be excluded by requiring for each component, say
C, of the system that on every cycle in the mode transition system of C, every clock of C
must be reset at least once.

Just like Zeno behavior and in contrast to timelocks, time divergence is compositional in
the sense that the combination of subsystems that are not time diverging yields a system with
the same property.

5.2 Error Behavior

Error models in SLIM are an extension to the specification of nominal models and are used to
conduct safety and dependability analyses. For modularity, they are defined separately from
nominal specifications. Akin to nominal models, an error model is defined by its type and its
associated implementation.

An error model type defines an interface in terms of error states and (incoming and out-
going) error propagations. Error states are employed to represent the current configuration
of the component with respect to the occurrence of errors. Error propagations are used to
exchange error information between components.

An error model implementation provides the structural details of the error model. It is
defined by a (probabilistic) machine over the error states declared in the error model type.
Transitions between states can be triggered by error events, reset events, and error propaga-
tions.

Error events are internal to the component; they reflect changes of the error state caused
by local faults and repair operations, and they can be annotated with occurrence distributions
to model probabilistic error behavior.

Moreover, reset events can be sent from the nominal model to the error model of the same
component, trying to repair a fault which has occurred. Whether such a reset operation is suc-
cessful has to be modeled in the error implementation by defining (or omitting) corresponding
state transitions.

Outgoing error propagations report an error state to other components. If their error states
are affected, the other components will have a corresponding incoming propagation.

Figure 5.7 presents a basic error model for the battery device. It defines a probabilistic error
event, fault, which occurs once every 1000 time units on average. Whenever this happens,
the error model changes into the dead state. In the latter, the battery failure is signaled to the
environment by means of the outgoing error propagation batteryDied. Moreover, the battery
is enabled to receive a reset event from the nominal model to which the error behavior is
attached. It causes a transition to the resetting state, from which the battery recovers with
a probability of 20%, and returns to the dead state otherwise.

Just as for nominal component specifications, we distinguish between initial and activation

starting states. Their meaning is similar to that of initial and activation modes: if an initial
state is given, the error model is put in that state only in the beginning of system execu-
tion, supporting error history during deactivation phases. With an activation state, the error

November 8, 2018 COMPASS Toolset User Manual 25

error model BatteryFailure

features

ok: activation state;

dead: error state;

resetting: error state;

batteryDied: out error propagation;

end BatteryFailure;

error model implementation

BatteryFailure.Imp

events

fault: error event occurrence poisson 0.001;

works: error event occurrence poisson 0.2;

fails: error event occurrence poisson 0.8;

transitions

ok -[fault]-> dead;

dead -[batteryDied]-> dead;

dead -[reset]-> resetting;

resetting -[works]-> ok;

resetting -[fails]-> dead;

end BatteryFailure.Imp;

Figure 5.7: An Error Model.

model starts over again in that state after each (re-)activation of the respective component.
This distinction is useful, e.g., for modeling the different error behavior of hardware and soft-
ware components: while reactivating a hardware component (like a processor) will generally
not remove the cause of an error, this is usually the case for software components (such as
processes).

5.3 Fault Injection

As error models bear no relation with nominal models, an error model does not influence the
nominal model unless they are linked through fault injections.

A fault injection describes the effect of the occurrence of an error on the nominal behavior
of the system. More concretely, it specifies any of the following when the associated error
models enters a specific error state:

• The value update that a data element of the component implementation undergoes;

• The list of nominal modes that are allowed to be entered;

• The list of events that can no longer occur.

To this aim, a nominal model can be associated with an error model, and subsequently the
various fault injections can be specified. Multiple instances of these fault injections are possible

November 8, 2018 COMPASS Toolset User Manual 26

per nominal component, as long as each such instance does not overlap with an existing one.
These fault injections are specified as follows:

• A fault effect consists of an error state s, an outgoing data port or subcomponent d, and
the fault effect given by the expression a. Here d must not be a clock or continuous

data subcomponent. While the error model is in state s, a is applied to d.

• A forced mode list consists of an error state s and a list of modes from the nominal
components M . Only those modes in M can be active while the error model is in state
s. When entering s and the current mode is not in M , the mode transitions to the first
mode specified in M .

• A event inhibition is specified by an error state s and a list of inhibited events E, where
each event is an outgoing event (data) port. While the error model is in state s, no
transition triggered by an event in E can be taken.

Section 6.3 describes how to define fault injections using the graphical user interface of the
COMPASS toolset.

The automatic procedure that integrates both models and the given fault injections, the
so-called model extension, works as follows. The principal idea is that the nominal and error
model are running concurrently. That is, the state space of the extended model consists of
pairs of nominal modes and error states, and each transition in the extended model is due to
a nominal mode transition, an error state transition, or a combination of both (in case of a
reset operation).

For more specific information about the model extension semantics and possible fault
injections, refer to [12], which describes these in fault detail, including their formal semantics.

Going back to the power system example above, the battery error model, BatteryFailure.Imp,
can be associated with the battery device Battery.Imp. The association in and of itself will
not change the behavior of the battery, but simply attach the error model. Fault injections
are optional and specified separately.

To model a change in data values, some fault effects can be added. For example, in the
error states dead and resetting, the value of voltage can be set to 0 by means of two fault
effects (one for each error state).

In addition, it is possible to force the battery in the depleted state by means of forced
modes: again for both the dead and resetting error states, the forced mode list could consist
of solely the depleted state. Were the battery in the charged state, upon entering the error
state dead or resetting, it would be forced into the depleted state.

Finally, modeling a more severe error condition, event inhibition allows the empty event
to be inhibited, which will prevent it from being triggered while the battery is in the depleted
state. Again in the same fashion for the other fault injections, specifying the empty event in
the list of inhibited events for both the dead and resetting error states will prevent it from
occurring. Note however, that in the given example implementation of the battery, a forced
mode transition will bypass this event regardless.

Chapter 6

Handling Models

The Model pane of the toolset is displayed on startup, allowing the user to load files containing
nominal and error model specifications and to relate these by defining fault injections. It is
depicted in Figure 3.1.

6.1 Loading Models

Adding Models First, nominal and error model specifications have to be entered using a
text editor, and saved to one or several files. The syntax of the corresponding SLIM Language
and the meaning of its constructs is described in Document [12]. Files can then be loaded by
clicking the Add button below the Loaded Files section of the window. This opens the Open
SLIM Files window through which the file system is accessible. After selecting one or more files
(using the Shift and/or Control key), they can be loaded by clicking Open. This procedure
can be iterated until all required files have been added. The mode loading functionality is also
accessible via the Load SLIM model entry of the File menu.

Syntactic Errors Loading fails if syntactic errors are detected. For example, a keyword
might be misspelled, or a part of the specification tries to redefine an existing type or imple-
mentation of a component or error model that has already been loaded. In this case, diagnostic
messages are displayed in the Output Console. After correcting the errors using the text edi-
tor, files can be reloaded using the Reload all button. The same is possible after modifications
of the specification. Moreover, entries can be removed from the list of loaded files by marking
them and clicking the Remove button.

Choosing the Root Component In the next step, the root component has to be chosen.
This is necessary as the definition of fault injections (see below) and the subsequent analyses
refer to the system that consists of the root component and all of its (direct and indirect)
sub-components. The root component candidates as displayed in the Root section are those
component implementations that do not occur as a sub-component of any other component,
and that are not contained in any package. If this candidate is unique, it is selected by default.

FDIR Components Components that have been designated as part of the FDIR specifica-
tion and optionally be replaced by an empty implementation. This can be used for instance to
verify the FDIR component does not alter the nominal behavior. Using the checkboxes next to

27

November 8, 2018 COMPASS Toolset User Manual 28

the FDIR components listed will toggle between the original and empty implementation. The
empty implementation corresponds to that of a subcomponent which refer to a type, see [12]
for details on the semantics.

6.2 Saving Models

Accessible from the CSSP tab, the Save button allows the user to save the current loaded
model, its properties and fault injections. When saving a model, a dialog will pop-up asking
for the name of the file to save the model to. By default, this is a unique name, but can be
changed as necessary. Note however that saving a model over an existing file will overwrite it.

Models are always saved into a single file. This means that when multiple model files were
loaded before, the contents of these files all get saved to the new model file. Furthermore, any
custom formatting or comments are lost. Therefore, it is recommended to save to a new file
and adjust its contents with an editor as necessary.

6.3 Defining Fault Injections

After successfully loading nominal and error model specifications, both can be related by
adding fault injections. The purpose of the latter is twofold:

• They associate an error model with an instance of a nominal component implementation.

• They define the impact of the occurrence of an error to the nominal behavior of the
respective component.

Entering Fault Injections The Fault Injection dialog (as depicted in Figure 6.1) is acces-
sible via the Edit button in the Fault Injections section of the main window.

On the left, the component to which the fault injection should apply can be selected. This
can be a component type, implementation or subcomponent.

On the right, the associated error model and fault injections themselves can be specified.
The error model can be selected on the top, and should be specified before any fault injection.
Setting it to None disables fault injection for that component.

All fault injections have in common they specify an error state, which is one of the states
specified for the chosen error model. As starting error states are considered to be nominal,
they are not shown in the list.

The Fault Effects section provides the list of specified fault effects (which initially is empty),
to which effects can be added with the Add button. They consist of:

• An error state;

• A target: This input allows to select the component’s data element (data subcomponent
or outgoing data port) that is affected by the error that was chosen from the State list.
Fault injections cannot be defined for clock or continuous data subcomponents.

• An effect: In this input one has to enter the right-hand side of the assignment that
defines the failure effect by overriding the nominal behavior. It must be a well-typed
expression over the incoming data ports of the nominal component if the fault injection
affects a flow, and a well-typed expression over arbitrary data elements otherwise.

November 8, 2018 COMPASS Toolset User Manual 29

Figure 6.1: The Fault Injection dialog

The Forced Modes section provides the list of specified forced modes (which initially is
empty), to which new entries can be added with the Add button. They consist of:

• An error state;

• A list of modes which are permitted in the selected state.

The Inhibited Ports section provides the list of specified inhibited ports (which initially is
empty), to which new entries can be added with the Add button. They consist of:

• An error state;

• A list of outgoing event (data) ports which are inhibited (cannot occur) in the selected
state.

After providing all required information, the fault injections can be saved by clicking Save.
Moreover changes to the fault injections can be reverted at any time by clicking Cancel.
Figure 6.2 shows the toolset after loading a model and defining some fault injections.

It is possible to add several fault injections. However,

• at most one error model can be attached to each component, and

• at most one injection per error state and data element can be defined.

November 8, 2018 COMPASS Toolset User Manual 30

Figure 6.2: Main Window of COMPASS Toolset After Model Loading

Model Extension After providing both nominal and error model specifications and fault
injections, these parts are automatically combined in the toolset using a procedure that is
called model extension (cf. Section 5.3). The resulting extended model is then used in the
subsequent analysis phases. It is not mandatory, however, to apply all fault injections that
have been defined so far in the model extension step: a subset can be chosen by (un)checking
the corresponding boxes in the Use column of the Fault Injections section.

Saving and Loading Fault Injections Additional functionality is provided through the
File menu, which provides two entries for respectively saving and loading fault injections.
When using the first, only those fault injections that are checked in the Use column are
stored. The default file extension is “.fixml” (for “Fault Injection XML file”).

Chapter 7

Properties

Various analysis function of the COMPASS toolset require, aside from the system specification,
one or more properties. This section describes the possible properties that can be specified.

7.1 Atomic Propositions

A core concept of properties is the atomic proposition. An atomic proposition is a Boolean
expression, similar to a mode transition guard. They define a certain state in the model,
generally by comparing a variable.

Example atomic propositions are:

• temp > 11, where temp is an outgoing integer data port of the root component,

• mode = mode:Ok, where Ok is a possible mode of the root component,

• sensor.mode = mode:Failed, where Failed is a possible mode of the sensor compo-
nent,

• error = error:transmittedFault, where transmittedFault is a possible state of the
error model that is associated with the root component, and

• status = enum:ACK, where status is a data subcomponent of the root component of
an enumeration type with possible value ACK.

We call all of the atomic propositions above instance based. This is because they talk about
e.g. a data subcomponent of a certain component implementation instance. In order to talk
about this instance one has to provide the unique path from the root component to that
instance. For example, in sc.ssc.port1, sc is a subcomponent instance of the root and ssc

is a subcomponent instance of sc.

Operators The following operators may be used, ordered from higher precedence to lower:

1. not (negation), - (unary minus) and (. . .),

2. * (multiplication), / (division), mod (modulo),

3. + (addition), - (substraction),

31

November 8, 2018 COMPASS Toolset User Manual 32

4. > (greater than), < (less than), >= (greater or equal than), <= (less or equal than), =
(equal to), != (not equal to),

5. and

6. or, xor (exclusive or), xnor (exclusive not or)

7. iff (if and only if),

8. imp (implies),

9. case (conditional),

Note that the overall type of the atomic proposition must be Boolean. Please see the SLIM
language specification [12] for a complete overview of available data types and operators.

Identifiers and Values Atomic propositions may refer to the following objects:

• Ports, e.g. sc.ssc.port1, where sc is a subcomponent identifier, ssc is a subcomponent
of the implementation of sc and port1 is the port identifier.

• Data subcomponents, e.g. sc.data1, where sc is a subcomponent identifier and data1

is the data subcomponent identifier.

• Constant values:

– Integers, e.g. 42,

– Reals, e.g. 42.001,

– Booleans, e.g. true,

– Enumeration literals, e.g. enum:C1, where C1 is the literal.

• Mode variables, e.g. sc.mode where sc is a the identifier of a subcomponent of the root
component, representing the current mode of the subcomponent sc.

• Mode names, e.g. mode:m1, where m1 is the mode.

• Error variables, e.g. error, referring to the current state of the error model that has
been associated with the root component.

• Error state names, e.g. error:e1, where e1 is the error state.

7.2 CSSP

Properties can be specified by means of the CSSP. the CSSP defines a set of model attributes,
which can be used to derive a formal property. Using the CSSP simply requires setting such
attributes, the property will then automatically be determined.

The following table lists all the available properties. These properties can be specified in
the model directly, or set from, the GUI (cf. section 7.5). The actual formal definitions of
these properties and their meaning follow after the table.

November 8, 2018 COMPASS Toolset User Manual 33

Name Value type Applies to

Change reference(event port, event data port) data, data port
ModeInhibited list of reference (event port, event

data port)
mode

ModeInvariant aadlstring mode
MonitorRange range of aadlinteger event data port
MonitorResponse reference(event port, event data port) event data port
MonitorDelay Time event data port
MonitorEnabled list of reference(mode) event data port
AlarmDelay Time event port, event data port
RecoveryDelay Time event port, event data port
Timeout Time event port, event data port
TimeoutReset reference(event port, event data port) event port, event data port
TimeoutCondition list of reference(mode) event port, event data port
Function aadlstring data port, event data port
InvariantRange range of aadlinteger data port, event data port
Reaction reference(event port, event data port) event port, event data port
ReactionCondition list of reference(mode) event port, event data port
ReactionMinDelay Time event port, event data port
ReactionMaxDelay Time event port, event data port
PrecededBy reference(event port, event data port) event port, event data port
PrecededCondition list of reference(mode) event port, event data port
PrecededMinDelay Time event port, event data port
PrecededMaxDelay Time event port, event data port
PeriodInterval Time event port, event data port
PeriodOffset Time event port, event data port
PeriodJitter Time event port, event data port
PeriodEnabled list of reference(mode) event port, event data port
ThroughputInput reference(event port, event data port) event port, event data port
ThroughputRatio aadlinteger event port, event data port
Tolerance aadlinteger port
FailureCondition list of reference(mode) component

The following table provides an overview of the formal properties defined by the CSSP.
In the left column, the name of the formal property is given, which can be referenced from
contracts or generic properties (cf. section 7.4). On the right, the formal definition is given in
terms of the CSSP properties.

Name element Formal property

PersistentProperty(p) data G(change(p)→ Change(p))
Specifies that the value of p changes only on the Change(p) event.

ModeInhibitedProperty(m) mode G(mode = m→
∧
e∈ModeInhibited(m)!e)

Specifies that the events in ModeInhibited(m) cannot occur in mode m.
ModeInvariant-
Property(m)

mode G(mode = m→ModeInvariant(m))

Specifies a generic invariant for mode m.

November 8, 2018 COMPASS Toolset User Manual 34

MonitorProperty(p) event data G((p ∧ mode ∈ MonitorEnabled(p) ∧ (data(p) 6∈
MonitorRange(p))) → F≤u Monitor-
Response(p)), where u = MonitorDelay(p).

Specifies that the event MonitorResponse(p) is fired if the value of p falls outside the
specified MonitorRange(p).

CompleteAlarm-
Property(p)

event
(data)

G(rise(mode ∈ FailureCondition(p)) → F≤u p),
where u = AlarmDelay(p).

Specifies that if failure configuration FailureCondition(p) is entered, the alarm event
p follows.

CorrectAlarmProperty(p) event
(data)

G(p → O≤u rise(mode ∈ FailureCondition(p))),
where u = AlarmDelay(p).

Specifies that if the alarm event p occurs, it was preceded by entering the failure config-
uration FailureCondition(p).

RecoveryProperty(p) event
(data)

G(p → F≤umode 6∈ FailureCondition(p)), where
u = RecoveryDelay(p).

Specifies that upon event p, eventually the failure configuration FailureCondition(p)
is recovered.

CompleteTimeout-
Property(p)

event
(data)

G(F≤u(TimeoutCondition(p) → p ∨ Timeout-
Reset(p))), where u = Timeout(p).

Specifies that if p does not occur within Timeout(p), the alarm TimeoutReset(p)
must occur

CorrectTimeout-
Property(p)

event
(data)

G(TimeoutCondition(p) ∧
O≤u TimeoutReset(p) →!p), where u =
Timeout(p).

Specifies that if the alarm TimeoutReset(p) occurs, the event p did not occur.
FunctionProperty(p) data G(p = Function(p))

event data G(p→ data(p) = Function(p))
Specifies the value of p remains within the associated function Function(p) (an expres-
sion).

InvariantProperty(p) data G(p ∈ InvariantRange(p))
event data G(p→ data(p) ∈ InvariantRange(p))

Specifies the value of p remains within the associated range of values.
ReactionProperty(p) event

(data)
G((p ∧ mode ∈ ReactionCondition(p)) →
F∈I Reaction(p)), where I =
[ReactionMinDelay(p),ReactionMaxDelay(p)].

Specifies the event p is followed by Reaction(p) provided the mode is in
ReactionCondition(p).

PrecededByProperty(p) event
(data)

p → O∈I PrecededBy(p)), where I =
[PrecededMinDelay(p),PrecededMaxDelay(p)].

Specifies the event p is preceded by PrecededBy(p)
PeriodProperty(p) event

(data)
(F≤v!enabled ∨ .[v,v+j] p) ∧ G(rise(enabled) →
(F≤v!enabled ∨ .[v,v+j] p)) ∧ G((p ∧ enabled) →
(F≤u!enabled ∨ .[u,u+j] p))

November 8, 2018 COMPASS Toolset User Manual 35

where u = PeriodInterval(p), v = PeriodOffset,
j = PeriodJitter, enabled = mode ∈
PeriodEnabled.

Specifies the event p occurs within the specified period and optional offset
ThroughputRatio(p) event

(data)
PeriodInterval(p) = ThroughputRatio(p) ∗
PeriodInterval(ThroughputInput(p))

Specifies the throughput of event p as an ratio of the throughput of
ThroughputInput(p).

ToleranceProperty(p) port G(]p <= Tolerance(p))

Specifies the tolerated number of failure events Tolerance(p). This is generally an
assumption for other properties.

MTTF(x) event,
component

ExpectedTime(mode ∈ FailureCondition(x))

The expected time (mean time) until FailureCondition(x) holds.
MTTR(x) event,

component
ExpectedTime(mode 6∈ FailureCondition(x)) with
starting state = FailureCondition(x)

The expected time (mean time) until FailureCondition(x) no longer holds.
Availability(s) system LRA(mode 6∈ FailureCondition(s))
The availability specified as the long-run average of s being in a nominal mode.

For more details about the CSSP, please refer to [8].

7.3 Property Patterns

A property pattern uses a predefined property structure with a number of placeholders, which
may be filled in by the user. A formal definition of the property is then automatically derived.

Often, placeholders are defined as atomic propositions, which are Boolean SLIM expressions
that define a certain state in the model, generally by comparing a variable. The following are
some examples of such atomic propositions (see [12] for more details):

• true : Simply true

• output = 3 : Asserts the output variable is 3

• subcomponent.error = error:failed : Asserts the error state of some subcomponent
is the state labeled failed

In general, a pattern is structured as follows:

• An (optional) scope, which defines when the property should hold. The scope can have
a beginning and end, which are specified by means of atomic propositions.

• The class of the patterns. These classes are described in the following.

• An optional time bound of the pattern. This time bound specifies during what time the
property must be true.

November 8, 2018 COMPASS Toolset User Manual 36

• An optional probability of the pattern. The probability specifies the likelihood the
property must be true. Currently its value is ignored: performability analysis simply
calculates the probability itself.

7.3.1 Pattern classes

Patterns are primarily defined by their class, which can be further grouped into two subclasses:
Occurrence and Order. The Occurrence group of classes consists of the following patterns:

• Universality: States a property always holds true;

• Absence: States a property never holds true;

• Existence: States a property eventually holds true;

• Recurrence: States a property holds true recurringly, that is, each time it becomes false,
it will become true again later on.

The Order group of classes consists of these patterns:

• Precedence: Some property must always be preceded by another.

• Response: Some property must always be followed by another.

• Response invariance: Some property must always be followed by another, which from
that point onwards always holds true.

• Until: Some property must always be followed by another, and must hold true until that
happens.

7.4 Generic Properties

Generic properties are specified directly as (temporal) SLIM expressions. They can be useful
for the following purposes:

• Specify a propositional property;

• Specify expected time or long-run average properties: Using the ET and LRA opera-
tors, these properties can be formulated. For example, ET error = error:Dead or
LRA error = error:normal.

• In case the CSSP or Pattern based approaches prove to be too restrictive.

7.4.1 Propositional Properties

For particular analyses, like fault tree analysis or failure modes and effects analysis, one has
to express purely propositional properties. Such a property corresponds to a valid atomic
proposition, like error = error:transmittedFault.

November 8, 2018 COMPASS Toolset User Manual 37

Figure 7.1: Property Manager View

7.5 GUI-Based Property Management

The Properties view of the GUI provides an overview of the specified properties, as well as
the means to add, edit or delete them. See Figure 7.1 for an example view.

The property manager consists of primarily a treeview on the left, listing the components
of the system specification, and the property specification panels on the right. Three panels
are available:

• Requirements: Here, model requirements can be specified(which are free-form text)
which may reference a property. This is for traceability of the model. Furthermore,
a property specification wizard is available from this panel, which provides a simple
step-by-step approach for specifying properties based on requirements.

• Properties: Here, the actual (formal) properties can be defined, in the three aforemen-
tioned ways:

– Generic Properties, see Figure 7.2;

– CSSP Properties, see Figure 7.3;

– Pattern Properties, see Figure 7.4.

• Contracts: Here, contracts and contract refinements can be specified.

Entering Pattern Properties Here we present an example of how to create and edit
properties using the property manager. Before doing this, we have to load a SLIM model.

November 8, 2018 COMPASS Toolset User Manual 38

Figure 7.2: Generic Property specification dialog

Figure 7.3: CSSP specification dialog

Figure 7.4: Pattern Property specification dialog

November 8, 2018 COMPASS Toolset User Manual 39

If we want to talk about error states in our properties, we additionally have to specify fault
injections. We will present a stepwise example using a sensor-filter example:

1. Load sensorfilter.slim and sensorfilterErr.slim from the
documentation/examples/sensorfilter folder in the COMPASS toolset.

2. Create a fault injection with implementation SensorFailures.Impl, state Drifted1,
Component Sensor.Impl, data element output and effect output *2.

Now the sensorfilter model is loaded and fault injections over it are specified. First we
define some (arbitrary) requirements for the model, for which we specify some properties later
on. For this purpose, the following three requirements are defined:

1. Requirement 1 : The probability of a sensor drifting within 50 time units must be lower
than 50%.

2. Requirement 2 : The output of a sensor under nominal conditions must be within [0, 5].

3. Requirement 3 : The expected time until a sensor fails must be larger than 10 time units.

The next step is to create properties for each requirement. For the first requirement, we
make use a of a pattern property:

1. Switch to the Properties view.

2. In the left treeview, select Sensor.Impl

3. Select the Properties subview.

4. In the Pattern panel, click Add.

5. Enter at the top a name for the property, for example Eventually drifted.

6. Choose Existence and Globally form the first two drop-down lists.

7. Fill in the gap (atomic proposition) of the pattern, for example error = error:Drifted1.

8. Change all the time into before, and enter 50. This sets the time bound.

9. Check the box next to with probability. The operator and value do not matter.

10. Click the Save button which becomes sensitive if all atomic propositions are syntactically
correct. In case there are errors, a tooltip will automatically appear and display an error
message in case it is possible to provide one.

The property is now added to the model. This should be followed by adding the requirement:

1. Select to the Requirement subview.

2. Click Add.

3. In the Requirement field, enter “Requirement 1: The probability of a sensor drifting
within 50 time units must be lower than 50%.”

4. In the Formalization field, enter Eventually drifted.

5. Click Save.

For the second requirement, we make use of the CSSP:

November 8, 2018 COMPASS Toolset User Manual 40

CSSP Properties For the CSSP, the procedure is slightly different. The CSSP is specified
by first selecting a element of the component for which to specify the CSSP property (or
the component itself, which is the default). Then a CSSP property is selected, followed by
assigning values to its attributes.

CSSP attributes have a checkbox Def. next to them. This is to indicate the attribute is
set (or not). To unset an attribute, simply ensure the checkbox is not active.

1. Switch to the Properties view.

2. In the left treeview, select Sensor.Impl

3. Select the Properties subview.

4. In the CSSP panel, click Add.

5. Set the Owner to Cycle.

6. Select ModeInvariantProperty in the left list.

7. Set the ModeInvariant field to error = error:OK implies output <= 5

8. Ensure the Def. box is checked.

9. Click the Save button.

The CSSP property is now defined. This should be followed by adding the requirement:

1. Select to the Requirement subview.

2. Click Add.

3. In the Requirement field, enter “Requirement 2: The output of a sensor under nominal
conditions must be within [0, 5]”.

4. In the Formalization field, enter ModeInvariantProperty.

5. Click Save.

Generic Properties For the third and final requirement, we enter a property directly, in
this case an expected time property:

1. Switch to the Properties view.

2. In the left treeview, select Sensor.Impl

3. Select the Properties subview.

4. In the Generic panel, click Add.

5. Enter at the top a name for the property, for example Expected time failed.

6. Enter ET(error != error:OK) in the Property field.

November 8, 2018 COMPASS Toolset User Manual 41

7. Click the Save button which becomes sensitive if all atomic propositions are syntactically
correct.

The property is now added to the model. This should be followed by adding the requirement:

1. Select to the Requirement subview.

2. Click Add.

3. In the Requirement field, enter “Requirement 3: The expected time until a sensor fails
must be larger than 10 time units.”

4. In the Formalization field, enter Expected time failed.

5. Click Save.

Editing Properties can be edited. Simply double click on it, or select it and click Edit. Note
that whenever a property is edited all analysis results attached to it are lost.

Deleting To delete a property, first click on the property to be deleted and then click the
Delete button. Note that for the CSSP, all of its associated attributes are unset, meaning
other CSSP properties may become deleted as well.

Loading/Saving Properties are loaded and saved together with the model. Therefore, to
save the properties, simply select Save SLIM Model As... from the File menu. Note that any
analysis results are not saved along with the property.

Older version of COMPASS used an XML based format for storing properties. To load
these files, select the item Load Properties... from the File menu. These properties are then
attached to the current root component of the model.

Chapter 8

Mission Specification

The Mission is the tab that contains modeling specifications that concern mission character-
istics such as mission phases, operational modes and spacecraft configurations.

Remark Mission specification is currently not used in other analyses of the COMPASS
toolset. It is present mainly for future extensions. For instance, it is conceivable to use of
mission phases and operational modes for verification activities such as, for instance, FTA and
definition of FDIR specifications. In this way, it would be possible to generate artifacts (e.g.,
FTs) that refer to given mission phases or operational modes.

COMPASS provides:

Mission Phases Mission phases or Phases are represented in a symbolic way. Phases can
be defined in terms of symbolic expressions over system/components configurations, that are
modeled in SLIM.

Operational Modes Operational modes or Op-modes are represented in a symbolic way.
Operational modes can be defined in terms of symbolic expressions over system/components
configurations, that are modeled in SLIM.

Spacecraft Configurations Spacecraft configurations, in combination with mission phases
and operational modes, can be used as targets of reconfiguration operations.

Steps We are now describe the mission definition in more detail. In particular, we describe
the following steps:

• Define list of Phases and Op-modes names

• Define S/C Configurations and associate them to Op-modes

• Define Phase/Op-mode combination via Observable

42

November 8, 2018 COMPASS Toolset User Manual 43

8.1 Loading and Saving the Mission Specification

Mission files are defined in XML format (extension: .mxml); once they are created, they can
be loaded into the toolset.

Steps

• Select the SLIM model from the Model pane

• Load mission specification using the File menu

• The mission specification is now loaded in the tab (see Figure 8.1)

Figure 8.1: The Mission tab

Mission specifications can now be edited as shown in Figure 8.2 (in this case, the Mission
configuration is beeing edited), removed and then saved to file.

8.1.1 Phases and Op-modes names

Phases and operational modes are defined as a simple list of names (see Figure 8.3). There is
no semantic behind these names, and they are not related to the SLIM Model.

The COMPASS Toolset allows the user to enter new phases and operational modes, to
edit some previously loaded specifications (i.e. change the name) and to remove them.

November 8, 2018 COMPASS Toolset User Manual 44

Figure 8.2: Editing Mission configuration

Figure 8.3: Define List of Phases/Op-modes names

8.1.2 S/C Configurations associated to Op-modes

Each S/C Configuration is represented by a label and a formula expressed over the SLIM model
(see Figure 8.4 for an example). No particular requirement is given on these configurations; in
particular, we do not care if configurations are overlapping. It is performed a syntactic check
on these definitions, in order to ensure that the specified components exist and checks that
each configuration is associate to at least one op-mode.

The COMPASS Toolset allows the user to enter new configurations, to edit and to remove
them.

November 8, 2018 COMPASS Toolset User Manual 45

Figure 8.4: Define S/C Configurations and associate them to Op-modes

8.1.3 Phase/Op-mode Combination via Observable

The third sub-panel of the Mission tab allows to define the Phases in terms of Op-Modes and
associate an expression over the observables to define a particular phase/op-mode combination
(see Figure 8.5).

It is important that each pair of expressions identifies a disjoint set of states, therefore a
check is performed prior to synthesis. All elements included in the definitions are tagged as
observables and an error is raised if cells are overlapping.

In this case, the toolset allows the user to edit a previously loaded definition and association,
but not to remove them or to create new ones.

November 8, 2018 COMPASS Toolset User Manual 46

Figure 8.5: Define Phase/Op-mode Combination via Observable

Chapter 9

Analyses

9.1 Support of Aspects w.r.t. Analyses

The COMPASS toolset pushes supportable analyses over SLIM models to the current theoret-
ical limits. For this reason, particular analyses can only handle a subset of SLIM constructs.
Table 9.1 shows the list of analyses and indicates which part of the SLIM specification is cov-
ered. The toolset provides warnings and disables functionalities when such a limit is reached.

Discrete means that the SLIM model under verification only uses discrete data elements,
which are integers, integer ranges and Boolean values. Hybrid means that the SLIM model
under verification uses the full scope of the SLIM language, including clocks and continuous
data elements.

Verifications that are marked with a “1” in Table 9.1 indicate that while the respective
analysis is supported, its semantic interpretation in combination with hybrid aspects is still
under debate.

9.2 Validation

The Validation window gives the user the possibility to validate the contracts that are specified
in the input model. Three types of validations are possible:

1. Contract validation: Analyze the consistency, possibility of a scenario or if a set of
properties entails an assertion.

2. Contract refinement: Perform analysis on contract refinements.

3. Contract tightening: Tightening of contract refinements.

9.2.1 Contract Validation

The contract validation panel (see Figure 9.1) can perform three different types on validation
for a given component. The component to perform validation on can be selected from the left
hand side.

Validation is performed on contract properties, which are the individual assumptions and
guarantees of the contracts. These properties are listed as ASSUMPTION, GUARANTEE

47

November 8, 2018 COMPASS Toolset User Manual 48

Analysis Discrete Hybrid
TFPG Synthesis 2� 2�
TFPG Behavioral Validation 2� 2�
TFPG Effectiveness Validation 2� 2�
Contract Consistency Validation 2� 2�
Contract Possibility Validation 2� 2�
Contract Assertion Validation 2� 2�
Contract Refinement 2� 2�
Tightening of a Contract 2� 2�
Model Simulation 2� 2�
Deadlock Checking 2�
Model Checking 2� 2�
Zeno Analysis 2� 2�
Time Divergence 2� 2�
Contract-Based Verification 2� 2�
Performability 2�
Fault Tree Generation 2� 2�
Dynamic Fault Tree Generation 2�
Hierarchical Fault Tree Generation 2� 2�
Failure Modes and Effects Analysis 2� 2�
Dynamic Failure Modes and Effects Analysis 2�
(Dynamic) Fault Tree Evaluation 2� 2�1

Criticality Evaluation 2� 2�1

(Dynamic) Fault Tree Verification 2� 2�1

Fault Detection Analysis 2� 2�
Fault Isolation Analysis 2� 2�
Fault Recovery Analysis 2� 2�
Diagnosability Analysis 2� 2�
Fault Coverage Analysis 2� 2�

Table 9.1: Overview of analyses and supported modelling aspects.

November 8, 2018 COMPASS Toolset User Manual 49

and NORM GUARANTEE (the norm guarantee, which is defined as ASSUMPTION →
GUARANTEE) in the Contract validation panel.

First, contract validation checks whether individual contract properties are consistent, by
selecting the Consistency validation type. This will check that contract properties are mutually
consistent. If so, a witness trace will be given. If not, and enabled, an unsat core is generated
instead. To check all contract properties of all components in the model, select Consistency
of all Contracts of all Components.

The Possibility type validates if contract properties are consistent with a scenario, which
is specified by means of another contract property. The inputs are the same as for the Consis-
tency check, with the addition of a secondary property selected in the lower half of the panel.
Similar to the Consistency validation, a witness is provided if the scenario is possible, and an
unsat core if not.

The Assertion validation type checks if a set of properties entail an assertion, specified
with a new property. The inputs are the same as for the Possibility validation type.

For all three types of analysis, the following options can be set:

• UnsatCores: If this option is check, unsat cores are generated when either an assert
check succeeds, or a consistency or possibility check finds a counterexample.

• Consistency of all Contracts of All Components: If this options is checked, the entire
architecture of the input model is validated. If unchecked, only the selected component
is validated.

• Algorithm: The validation algorithm to use. For details, see the description of these
options in Section 9.4.

The Properties list allows the selection of properties to be validated. For each contract
of the selected component, the ASSUMPTION, GUARANTEE and NORM GUARANTEE
properties are available. In case all contract properties should be validated, the checkbox can
be selected.

Steps

1. Select the SLIM model from the Model pane

2. In the Validation pane select the type (Consistency, Possibility or Assertion

3. Activate the checkbox Consistency of all Contracts of all Components (optional)

4. If the Consistency type has been selected, this will enable the button Run

5. If Possibility or Assertion type has been checked, select one or more contracts from the
Contracts pane, and a list of properties in the proper panes; this will enable the button
Run

6. The user can now run the analysis by clicking on the button Run, that will fill the pane
below with the results of the computation

In this example (see Figure 9.2) the consistency type has been selected; a message confirms
that all the contracts are consistent and the list of consistency component results is displayed.
It is possible to see the different traces by clicking the buttons Next and Prev.

November 8, 2018 COMPASS Toolset User Manual 50

Figure 9.1: Validation

Figure 9.2: Validation - Consistency check

November 8, 2018 COMPASS Toolset User Manual 51

Figure 9.3: Validating contract refinements

9.2.2 Contract Refinement

The Contract Refinement panel, see Figure 9.3, allows the contract refinements specified in
the model to be validated. On the left hand side, the contract to be validated can be selected.
If All Contracts is selected, the validation will be performed for each contract individually.

If fault injections are specified (see Section 6.3), the option Model extended by Fault Injec-
tions allows them to be enabled or disabled. The option Add fairness assumption on compo-
nent execution allows the fairness assumption to be enabled (see [12]). Under Algorithms the
analysis algorithm can be selected. For each algorithm, a bound is to be defined under Bound.

The result of the validation is indicated in the contract list in the Ref column. OK indicates
the refinements are valid, BOUND OK indicates the refinements are valid up to the analyzed
bounds, NOK indicates a problem with the refinement. Details of the analysis are displayed
in the lower half of the panel.

Steps

1. Select the SLIM model from the Model pane

2. Select one contract from the Contracts pane on the left; this will enable the button Run

3. The user can now run the analysis by clicking on the button Run, that will fill the pane
below with the results of the computation

In example 9.4 contract refinement on All Contracts has been performed using algorithm
klive; a message confirms that everythin is OK.

November 8, 2018 COMPASS Toolset User Manual 52

Figure 9.4: Contract Refinement - example

9.2.3 Contract Tightening

The Tightening panel, see Figure 9.5, allows a given contract refinement to be tightened by
weakening the assumption of the parent contract and the guarantee of its subcontracts (top-
down approach) or strengthening the guarantee of the parent contract and the assumption of
its subcontracts (bottom-up approach).

On the left hand side, the component can be selected of which its contracts should be
tightened. After selecting the component, the Contract list allows the contract to be tightened
t to be selected. After doing so, the tightening can be performed.

Two types of tightening are available: The Top Down approach does so by weakening the
assumptions of any parent contracts and weakening the guarantees of any child contracts. The
Bottom Up approach does so by strengthening the parent contract guarantees and strength-
ening the child contract assumptions.

After performing the tightening, the results are shown in the lower part of the panel.

Steps

1. Select the SLIM model from the Model pane

2. Select one component from the Components pane on the left

3. Select one contract from the Contracts pane; this will enable the button Run

4. The user can now run the analysis by clicking on the button Run, that will fill the pane
below with the results of the computation

Figure 9.6 is an example of a result of a (top-down) tightening check.

November 8, 2018 COMPASS Toolset User Manual 53

Figure 9.5: Tightening a contract specification

Figure 9.6: Tightening - example

November 8, 2018 COMPASS Toolset User Manual 54

9.3 TFPG

The TFPG window gives the user the possibility to perform some model-based reasoning tasks
on TFPGs. Three types of analysis are possible:

1. Behavioral Validation: Check if a TFPG is complete or incomplete with respect to a
model

2. Synthesis: Synthesize automatically a complete TFPG, starting from a system model
and a set of TFPG associations

3. Effectiveness Validation: Check whether a Failure Mode of the TFPG is diagnosable or
not in a particular System Mode.

Before introducing these tabse, we explain what a TFPG is.

9.3.1 Introduction to TFPGs

Time Failure Propagation Graphs (TFPG) are introduce to support various aspects of diag-
nosis and prognosis in complex systems. They are able to model, for example, the temporal
dependency between the occurrence of events of interest, and their dependence on system
modes.

A TFPG is a labeled directed graph where nodes represent either fault modes, which
are fault causes, or discrepancies, which are off-nominal conditions that are effects of failure
modes. There are two types of discrepancies: AND discrepancies and OR discrepancies.

Edges between nodes in the graph capture the effect of failure propagation over time in the
underlying dynamic system and they propagate in a time interval [tmin - tmax]. Edges in the
graph model can be activated or deactivated depending on a set of possible operation modes
of the system (activation modes); this allows to represent failure propagation in multi-mode
(switching) systems.

Figure 9.7 shows how a TFPG is rendered in the GUI in the Viewer, which is the first
subview that appears when a TFPG is loaded. It is possible to zoom in and out the graph,
to move it and to reset all to the inital position. Additionally, by pressing the Edit button a
textual editor showing a textual representation of the TFPG is opened, by which it is possible
to change some aspects of the selected graph.

If errors are encountered while parsing or editing a TFPG, the GUI switches to Errors
pane, where the error is reported, as shown in Figure 9.8.

All TFPG analysis are carried out by specifying some TFPG SLIM associations. TFPG
associations define TFPG elements (failure modes or discrepancies) in terms of SLIM propo-
sitional expression, which can be written and edited in the Slim associations pane (see Figure
9.9). In particular it is possible to:

1. Associate failure modes in the TFPG to errors that are currently injected in the SLIM
model

2. Associate monitored discrepancies in the TFPG to observable SLIM expressions

3. Associate non-monitored discrepancies in the TFPG to SLIM expressions

4. Assoicate TFPG modes to observable SLIM expressions

November 8, 2018 COMPASS Toolset User Manual 55

Figure 9.7: Viewing a TFPG

Figure 9.8: TFPG Errors panel

9.3.2 Behavioral Validation

The Behavioral Validation panel, see Figure 9.10, allows to check if a TFPG is complete or
incomplete with respect to a model; this means to check whether every trace in the system
model has a corresponding trace in the TFPG.

November 8, 2018 COMPASS Toolset User Manual 56

Figure 9.9: Slim associations

Figure 9.10: Behavioral Validation

Steps

1. Select the SLIM model from the Model pane

November 8, 2018 COMPASS Toolset User Manual 57

2. On the left hand side select a TFPG (previously loaded or created)

3. Load slim associations in the Slim associations pane; this will enable the button Run

4. Optionally, modify the value of the SAT bound (by default 10) in order to refine the
check.

5. The user can now run the analysis by clicking on the button Run; the results are shown
in the lower part of the panel.

Figure 9.11 shows an example of complete TFPG.

Figure 9.11: Behavioral Validation - Complete result

9.3.3 Synthesis

The Synthesis panel, see Figure 9.12, allows to automatically synthesize a complete TFPG,
starting from a system model and a set of TFPG associations, which must be specified in
the proper part (at least one failure mode, one discrepancy, monitored or unmonitored, and a
TFPG mode must be present). After completing the analysis, if has been possible to synthesize
a TFPG, it is loaded in the left hand side, otherwise a message is shown to the user in the
lower part of the panel.

Steps

1. Select the SLIM model from the Model pane

2. Load slim associations in the Synthesis pane; this will enable the button Run

November 8, 2018 COMPASS Toolset User Manual 58

Figure 9.12: Synthesis

3. Optionally, modify the value of the SAT bound (by default 10) in order to refine the
check.

4. The user can now run the analysis by clicking on the button Run; the results are shown
in the lower part of the panel.

In this example (see 9.13) it has been possible to synthesize a TFPG called Dependency

Graph.

Figure 9.13: Synthesis of a TFPG

November 8, 2018 COMPASS Toolset User Manual 59

9.3.4 Effectiveness Validation

The Effectiveness Validation panel, see Figure 9.14, allows to check whether a failure mode of
the TFPG is diagnosable or not in a particular system mode. The analysis loops over each
pair Failure Mode, System Mode, showing the result in real-time; if the pair is found to be not
diagnosable, a message appears with the counterexample, otherwise only a message appears.
If a counterexample is generated, it shows a pair of traces that witness non-diagnosability for
the given failure mode in the given system mode.

Figure 9.14: Effectiveness Validation

Steps

1. Select the SLIM model from the Model pane

2. On the left hand side select a TFPG (previously loaded or created); this will enable the
button Run

3. Optionally, modify the settings of the engine (BDD or SAT to refine the check

4. The user can now run the analysis by clicking on the button Run; the results are shown
in real-time in the upper part of the panel.

In this example (see 9.15), the failure mode Gen1 off has been found to be diagnosable
in modes Primary and Secondary1, while it is not diagnosable in mode Secondary2; in this
case, the counterexample is shown in the lower part of the panel.

November 8, 2018 COMPASS Toolset User Manual 60

Figure 9.15: Effectiveness Validation - Example

9.4 Verifying Functional Correctness

The Correctness window gives the user the possibility to analyze the behavior of a SLIM
model, and check if it satisfies a set of desired properties (showing a reason for unsatisfaction,
in case the properties do not hold). In addition, as a preliminary sanity check, it is also
possible to check the model for absence of deadlocks.

These features are provided by six sub-panes, namely:

1. the simulation pane, which allows the user to perform random and guided simulations
on the model,

2. the deadlock checking pane, which allows the user to verify the absence of deadlocks,
and

3. the model checking pane, which allows the user to check whether a property holds or
not in the model.

4. the zeno analysis pane, which allows the user to check if a mode of the SLIM model is
Zeno.

5. the time divergence analysis pane, which allows the user to check whether a clock is
divergent or not

6. the contract-based verification pane, which allows the user to check the monolithical
verification of a contract

The correctness window is depicted in Figure 9.16. In the following sections we describe
the correctness sub-panes in detail. In order to understand the sections 9.4.2 and 9.4.4 it is
also recommended to have a look at the section 9.4.1.

November 8, 2018 COMPASS Toolset User Manual 61

Figure 9.16: The main view of the correctness window

9.4.1 Trace Inspection

A trace is a set of stripes which describes a particular behavior of the system, they are
used in model checking 9.4.4 to provide a counter-example for false properties, and in model
simulation 9.4.2 to check the witness of the system.

A stripe represents a signal that changes in a discrete (or continuous) timed environment.
Each stripe is composed by a name, and a set of values, one for each system’s step (i.e.
configuration). The steps are linked together by transitions, that can be discrete or continuous,
and represents the evolution of the system.

From a practical point of view a trace can be viewed as a table, in which rows are the
stripes, and columns are the steps.

(a) How the rows underline value changes

(b) How the rows show the Boolean values

Figure 9.17: Trace’s details

The notations used in the tables that represents a trace follows:

1. Each stripe (row) have a type. Each types has a color associated with, for example
blue, and red. In the error stripes the name’s foreground is red, and additionally the
background of each step is red.

2. When a transition changes a value in a stripe, his cell looks different in order to remark
the variation (see Figure 9.17(a)).

November 8, 2018 COMPASS Toolset User Manual 62

3. if the values are Boolean, than a square wave is shown (see Figure 9.17(b)).

4. Finally the continuous transitions are underlined by a magenta background on the steps
that derives from them.

Filtering features

Another important feature of the trace, is the trace filtering.
The trace filters can be accessed through a trace filter bar at the bottom of the trace (for

more information about the trace read the paragraph below). Using filters, it is possible to
filter the set of signals that will be shown in the window. It is possible to filter depending on
the name, the type, and the number of steps of the trace. The procedure to use the filter bar
is the following:

1. The filter bar (compare Figure 9.18), is composed by a ’quick’ part in which the user can
apply a quick filter (only on the names), and a ’stored’ part in which advanced filtering
options are enabled. In the latter case, the filters will be automatically stored.

2. Figure 9.19 shows an example of usage of the quick filter (on the fly filtering on the
names). The filtering on names supports the full power of the regular expressions, so
any regular expression can be used.

3. In order to use the full features of the filters (i.e., filtering on steps, on types and on
names) the user has to create a “stored filter, by clicking on the Edit button in the filter
bar. This opens a pop-up window (shown in Figure 9.20) that allows more complex
filtering. The filtering on names was explained before, the filtering on the steps can be
done writing in the Filtered steps field a sequence of comma separated ranges, each with
the following syntax:

(a) a single number, that represents a single step that will be shown when the filter is
active (i.e. a single number like 7 or 8)

(b) or a two side bounded range, that represents a set of steps that will be shown
when the filter is active. This range is composed by a starting number, which is
the starting step, and a special symbol ’-’ that represents the range, and an end
number, which is the ending step. (i.e. 7-19 shows all the steps from 7 to 19, both
included)

(c) or a single side bounded range, that represents an unbounded set of steps that
will be shown when the filter is active. This range is composed optionally by a
starting point (the same as the starting point in the two side bounded range), a
special symbol ’-’ that represents the range, and optionally by an ending point
(the same as the ending point in the two side bounded range). The missing bound
means until there are steps shows them, (from here to the begin if the the starting
bound is not specified or from here to the end if the ending bound is not specified).
At least one of the two bound must be set, in order to give meaning to the filter.
(i.e. 9- means from 9 to the end of the trace, -5 means from the step 1 (that is the
first step) to the step 5).

November 8, 2018 COMPASS Toolset User Manual 63

If one or more ranges are not valid, the button Ok will be automatically disabled. Finally
the Filtered types entry can be a list of comma separated types that have to be shown.
The supported types are ’input’, ’type’, ’combinatorial’ and ’error’.

,

Figure 9.18: The filter bar

Figure 9.19: Quick filtering

Figure 9.20: Advanced filtering

The button Remove is used to delete the current active stored filter (if there are no active
filters, then clicking on the this button has no effect).

November 8, 2018 COMPASS Toolset User Manual 64

A quick essay of the syntax of regular expressions is presented in the following table:
Char Meaning Example

. Matches any character except a
newline

a.b matches aab, abc, acb, etc.

∧ Matches the start of the string
$ Matches the end of the string
? Matches 0 or more repetitions of

the preceding RE
ab* will match a, ab, or a followed by any
number of b.

+ Matches 1 or more repetitions of
the preceding RE

ab+ will match a followed by any non-zero
number of b; it will not match just a.

? Matches 0 or 1 repetitions of the
preceding RE

ab? will match either a or ab.

\ Escapes special characters (per-
mitting you to match characters
like ’*’, ’?’, ’.’, and so forth)

a\.b will will match ’a.b’

[] Used to indicate a set of char-
acters. Characters can be listed
individually, or a range of char-
acters can be indicated by giv-
ing two characters and separating
them by a ’-’.

For example, [akm$] will match any of the
characters ’a’, ’k’, ’m’, or ’$’; [a-z] will match
any lowercase letter, and [a-zA-Z0-9] matches
any letter or digit.

A|B where A and B can be arbitrary
REs, creates a regular expression
that will match either A or B. An
arbitrary number of REs can be
separated by the ’|’ in this way.

9.4.2 Model Simulation

The model simulation pane is the first one. It is typically an useful starting point to check
the behavior of a model. It allows the user to carry out three activities:

• random simulation, in which the values of the model signals are chosen automatically
by the system and

• guided by transitions simulation, in which the user can explicitly force the system’s
behavior by picking one of the available transitions.

• guided by values simulation, in which the values of the model signals can be forced by
user in order to verify the behavior of the system under specific scenarios.

During one simulation, it is possible to switch among the different types at any moment.
The simulation pane, shown in Figure 9.21, is shared among the three simulation types,

and contains control buttons.
From left to right, the following items are shown:

November 8, 2018 COMPASS Toolset User Manual 65

Figure 9.21: The main control buttons of the model simulation

(a) Combo box for
selecting simulation type

(b) Run
button

(c) Restart
button

(d) Jump
button

(e) Simulation length (f) Checkbox to add/remove error stripes

Figure 9.22: Detailed descriptions of the simulation pane control buttons

1. A combo box (initially labeled Random that can be used to set the type of the simulation
that the user wants to carry out (compare Figure 9.22(a)).

Other available values are Guided by transitions and Guided by values.

2. A button Run that starts the simulation and causes an update of the trace viewer table
(compare Figure 9.22(b)).

3. A button Restart that is available only when there is an active simulation, (i.e., the
button Run was clicked) and restarts the simulation (i.e., it goes back to the first step).
Note that in this case, all the other steps are lost (compare Figure 9.22(c)).

4. A button Jump that is available only when there is an active simulation (i.e., the button
Run was clicked) allows the user to go back to a previous step by clicking first on the
button Jump and then on the column labeled with the step number to which the user
wants to go (compare Figure 9.22(d)).

5. An option field that allows the user to choose how many steps will be automatically
carried out (both in random and in guided simulation) by the simulator (compare Fig-
ure 9.22(e)).

6. Finally, the check box labeled Simulate the model extended by fault injections allows
the user to simulate a SLIM model extended with the specified fault injections. If the
check box status changes when a trace is active, the next simulation will start from the
beginning (state 1) in order to add (if the check box is selected) or remove (if the check
box is not selected) the stripes that represents the fault injections (see Figure 9.22(f)).

November 8, 2018 COMPASS Toolset User Manual 66

In the next sections we explain in more detail how the traces generated by random simu-
lation, guided-by-transitions and guided-by-values simulation look like.

Random Simulation

In random simulation the trace appears after the first click on the Run button, below the
controls of the model simulation pane, and looks like in Figure 9.23.

Figure 9.23: A simulation example

As we can see the trace is composed by a table where the first column provides the name
of a model element, and in the other columns the value of that element, for each step of the
simulation, is shown. The fault injection stripes are shown with a red background, whereas
the Boolean stripes are shown as a waveform with two values, the “high” one for the true
value, and the “low” one for the false value.

Moreover, it is also possible to use the filtering features that are explained in Section 9.4.2.

Guided-by-Transitions Simulation

In Guided-by-Transitions simulation it is possible to select step after step either single discrete
transitions to be executed in the simulation, or time-transitions if the currently loaded SLIM
model features timed/hybrid behaviors.

Figure 9.24 shows where the type of guided transition (Discrete vs Timed) can be chosen.
In guided Discrete transitions simulation, the simulation pane is split in three sections:

1. the left-top section consists of a tree viewer which lets the user choose among available
implementations for the model which is currently being simulated. Here the number of
enabled transition is also indicated.

2. the left-bottom section lists available transitions for the implementation selected in the
above section. The unavailable transitions are struck through and not selectable (but
still visible). Enabled transitions are instead selectable.

November 8, 2018 COMPASS Toolset User Manual 67

Figure 9.24: Guided-by-Transitions types

3. the right section contains the visual representation of the trace, similarly to random
simulation as described above.

An example of discrete transitions guided simulation is shown in Figure 9.25.

Figure 9.25: Discrete-transitions guided simulation

To carry out a single discrete transition, it is needed to:

1. Select one Component implementation containing at least one enabled discrete transi-
tion.

2. Select the transition among those which are enabled

3. Click the ’Run’ button in the simulation pane, or alternatively double-click the transition
chosen at the previous step.

When a single transition is carried out, the shown trace gets extended by one step, and
the simulation can be continued on.

If the currently loaded SLIM model contains hybrid/timed behaviours, and when it is
possible to carry out a timed-transition, the pane for guided Timed transitions simulation is
available.

The Timed-transitions guided simulation pane is shown in Figure 9.26. When performing
a time-transition, it is possible to specify some constraints about the time duration of the
transition. For example in Figure 9.26 duration has to be greater than 0.0 and lesser than or
equal to 5.0 time units.

To carry out a single time transition, it is needed to:

November 8, 2018 COMPASS Toolset User Manual 68

Figure 9.26: Timed-transitions guided simulation, with some constraints specified

1. Select the Timed Transition pane.

2. Optionally specify constraints for the time duration.

3. Click the ’Run’ button in the simulation pane. The button may be not enabled when
the optionally specified constraints are invalid or inconsistent with the current model
state.

Figure 9.27: After a Timed-transitions has been carried out

When a time-transition is carried out, the shown trace gets extended by one continuous
step, and the simulation can be continued on. However, the next transition will have to be a
discrete transition, as two consecutive timed transitions are not allowed to occur by construc-
tion. Figure 9.27 shows the result of a timed-transition with the mentioned constraints.

Guided-by-values Simulation

In guided-by-values simulation, the trace is shown differently with respect to random simula-
tion. There are two representations of the same trace, namely:

1. the left one shows the last two steps plus an additional one that is editable, so the user
can force the future value of the simulation in order to see how the system behaves

2. the right one shows the complete trace (with all the steps) but the stripe name is at the
end.

November 8, 2018 COMPASS Toolset User Manual 69

Figure 9.28: Guided-by-values simulation

An example of guided-by-values simulation is shown in Figure 9.28.
In order to force values in the stripes, the user has to follow this procedure:

1. Click on the new step column in the row that represents the stripe to be edited.

2. Insert the value to be forced. If the value is OK, the background of the cell becomes green,
otherwise the background becomes red, and a tooltip will be shown with a description
of the error.

If no values are forced, the simulation behavior does not change. Otherwise, the system try to
simulate the system forcing the constraints specified by the user, namely, if the trace generated
for a given integer stripe (that represents the evolution of a signal) ends at the step 9, with
value ’0’, and in the new step column, in the given stripe line the users write ’1’, the system
at the next simulation try to force the value of the given integer signal to be ’1’.

If this operations fail, no steps will be added to the trace, and an error message is shown
(compare Figure 9.29).

Moreover, it is also possible to use the filtering features explained in Section 9.4.2.

9.4.3 Deadlock Checking

In the deadlock checking pane, the user is presented with a button labeled Run Deadlock
Checking. By pressing this button, the current SLIM model is checked for the presence of
possible deadlocks. The corresponding pane is shown in Figure 9.30.

There are two possible outcomes of this analysis:

1. When the model does not contain deadlocks, the message in Figure 9.31 is shown.

November 8, 2018 COMPASS Toolset User Manual 70

Figure 9.29: Guided-by-values simulation failure example

Figure 9.30: The deadlock checking pane

2. Otherwise, the message in Figure 9.32 is shown.

Figure 9.31: Model deadlock free

Note that deadlock checking is disabled when the model is hybrid (see section 9.1).

9.4.4 Model Checking

The model checking pane is used to check a SLIM model against one or more properties.
The properties must be chosen among the available ones. The initial window looks like in
Figure 9.33.

The underlying model checker (NuSMV) allows for model checking of both finite purely
discrete and infinite hybrid/timed SLIM models. In the case of finite discrete models, two
techniques are available: BDD-based model checking and SAT-based model checking. In the
case of infinite hybrid/timed models, only SAT-based model checking is available.

Figure 9.34 show the options which are provided to select the underlying technology to be
used by the model checker.

In the following, a short description of these techniques is given, along with the main
advantages and drawbacks each of them offers. Some practical guidelines are also provided,
in order to make the user aware of which options are available and what she may expect to
encounter especially when tackling big models.

November 8, 2018 COMPASS Toolset User Manual 71

Figure 9.32: A deadlock found in the model

Figure 9.33: The model checking initial window

Figure 9.34: Model checking options

BDD-based Model Checking

BDDs (Binary Decision Diagrams) are efficient structures used to represent a set of states
symbolically. They represent the basement structure used by NuSMV when model checking
properties. The model checking algorithm consists of an exhaustive search of the state space
of the concurrent system to determine truth of property. The search is complete, and the
result is either “True” if the property holds, or “False” if it does not. If the property does not
hold, a counter-example is also extracted and shown to the user.

However, it is important to consider that the length of the provided counter-example is not
guaranteed to be minimal, which is instead the case when using SAT-based model checking.

Even if BDDs represent states symbolically (and not explicitly like in other techniques
like in explicit-state Model Checking), and even if NuSMV features advanced heuristics for
achieving efficiency and partially control the state explosion, BDD-based Model Checking can
be a very resource-consuming (both time and memory) activity.

To enable BDD-based model checking, option Use BDD (see Figure 9.35) has to be selected.

November 8, 2018 COMPASS Toolset User Manual 72

Figure 9.35: The Model Checking pane with two properties selected

SAT-based Model Checking

If from one hand BDDs can provide safe and certain answers, on the other it might be not able
to provide them within the available resources. In this case exploiting SAT-based techniques
can help.

SAT-based technique is an alternative to BDD-based Model Checking, and can be used
when latter is not available (timed/hybrid SLIM models), or when BDDs is too resource-
consuming to provide an answer.

SAT exploits a techniques called Bounded Model Checking (BMC). In BMC the property
to be verified is encoded in LTL, negated and then manipulated to be combined with the
SLIM model (tableau construction).

The combined SLIM model and the negated property’s tableau are then “unrolled” lin-
early into steps with a given bound, to produce a BMC problem. Each step of the unrolling
corresponds to a single discrete or hybrid/timed configuration-transition of the SLIM model,
starting from the initial state.

After that a K-bounded BMC problem has been produced, a SAT solver (or a SMT1 Solver
for the timed/hybrid cases) is invoked to search for an execution of the SLIM model which
can satisfy the BMC problem. If such execution exists, it is a witness of the violation of the
property, the property can be safely told to be “False”, and the witness can be presented as
a counter-example proving it.

One advantage on BDD-based model checking is that the provided counter-example is
assured to be minimal, meaning that there exists no other possible counter-example whose
length is lesser than the length of the given counter-example.

Otherwise if no execution can be found, then the property can be safely told to be “True
up to step-K”.

However, it is not possible to state safely that the property holds. It is then possible
to increase K to K + 1 and search for an execution of the SLIM model which satisfy the
K + 1-bounded BMC problem.

For example with bound 0 the property is checked only against the initial state. If the
bound is 1, all the possible states reachable with any single transition (discrete or timed) are

1Satisfiability Modulo Theory

November 8, 2018 COMPASS Toolset User Manual 73

checked. The search is exhaustive, but it is bounded.
If no counterexample is found within the specified bound, the message “The property is

true up to bound ”K” is shown. (See Figure 9.37

Tackling incompleteness of SAT

BMC is an incomplete method unless a value for the bound K can be determined to guarantee
that no counterexample can be missed. There are a few works (see [10] and [6]) which have
investigated techniques for computing this bound, but at the moment these techniques have
not been implemented, and deciding a sufficient value for the bound is still an open research
issue.

However, following the intuition that simpler problems are easier to solve (and the model
can then be explored with deeper bounds), a technique called Simple Bounded Model Checking
(SBMC) (see [11]) has been implemented in NuSMV.

SBMC presents an encoding for the BMC Problem which is linear in the bound, the system
description (i.e. the size of the transition relation as a propositional formula) and the size of
the property as an LTL formula. The resulting propositional formula has both a linear number
of variables and clauses.

Furthermore, SBMC has been extended with an option which make it a complete checking
technique. This means that even using SAT technology it is possible to tell the user that a
given property is true. However, enabling completeness checking may increase computation
times significantly, and it is available only for discrete SLIM models.

If SBMC is not available as the model is timed/hybrid, or if SBMC cannot conclude that a
property is true, then it is up to the user2 to decide which is a sufficient bound for the analysis
depth. In this case Model Checking gets closer to standard testing/simulation, with the big
difference that in (Bounded) Model Checking all possible execution up to a given bound are
explored exhaustively, whereas in testing/simulation each execution has to be tested separately.

K-Liveness

K-Liveness [5] is an algorithm to prove liveness properties such as LTL properties by reducing
the problem to prove an invariant. The algorithm builds a monitor for a “live” signal so that
the original property is satisfied if and only if the signal can be seen only finitely many times.
K-Liveness proves therefore the property by checking that such signal can be visited at most
K times (so K is the bound used for K-Liveness). Note that, in the case of infinite-state
systems, the problem is undecidable and such method is sound but incomplete: there may be
systems for which no K is sufficient to prove that the property.

K-Liveness is integrated with an efficient algorithm for checking invariant called IC3 [2].
IC3 is a symbolic model checking algorithm which combines a search-based approach with
inductive reasoning. It builds an over-approximation of the reachable state space, using clauses
obtained by generalization while disproving candidate counterexamples. COMPASS actually
uses IC3IA [3], an extension of IC3 for infinite-state systems, which integrates IC3 with implicit
predicate abstraction [13].

When dealing with timed systems K-Liveness is further enhanced with the technique de-
scribed in [4], which ensures that the time progresses between consecutive occurrence of the

2This is indeed a limit of the current technology

November 8, 2018 COMPASS Toolset User Manual 74

“live” signal. Although the algorithm is in general still incomplete, it is quite effective on
many practical problems.

Notes on Model Checking Timed (and Hybrid) Specifications

In addition to what explained in the previous section, there are other reasons for incomplete-
ness in the case of timed and hybrid models. In fact, in general it is well known that even
‘simple’ problems such as reachability analysis are already undecidable for simple classes of
timed and hybrid models. This means that there are models for which model checking is not
guaranteed to find a counterexample (for any bound) even if one exists. In addition to this, the
user must be aware of the following characteristics and limitations of the current technology:

• model checking is carried out on fair paths. In the timed and hybrid context, a path
is considered fair if timed transitions occur infinitely often. In addition, time must not
converge to a finite bound. In particular, paths which show Zeno behaviors or timelocks
(compare Section 5.1.1) are excluded. The user must be aware of the fact that for
models that do not admit fair paths, the result of model checking universally quantified
properties is trivially true (a property is true on all fair paths, as there are no fair paths).
Compare Section 5.1.1 for ways to avoid such behaviors.

• the current SMT-based technology for timed and hybrid systems looks for infinite coun-
terexamples that are loop-shaped (finite traces with a ‘back-pointer’ to a previous state).
As such, this technology is not able to find infinite counterexamples that cannot be ex-
pressed in this way. A notable example is given by models that show time divergence
(compare Section 5.1.1). In such cases, the current technology is not guaranteed to find
counterexamples even for theory fragments and problems that are decidable (e.g., reach-
ability for timed automata). We refer to Section 5.1.1 for ways to avoid such behaviors.

Note that these characteristics and limitations also hold for other analyses based on model
checking such as Safety and Dependability Analyses. We refer to the COMPASS project final
report for an additional discussion about future perspectives in this area.

Options for SAT technology

Figure 9.36: The SAT technology options

Figure 9.36 shows the parameters which are available when SAT is enabled. In particular,
there are a few options which are listed here:

• SAT Bound is the maximum number of steps (bound) that SAT will analyze in order
to find a counterexample. The search starts from 0 and incrementally goes to the given
maximum bound.

If a counterexample is not found within the specified bound, an the user is warned with
a message (see Figure 9.37)

November 8, 2018 COMPASS Toolset User Manual 75

Figure 9.37: SAT cannot tell the user if a property is true

• Use SBMC enables the model checker to use Simple Bounded Model Checking, which is
a (possibly faster) alternative with respect to standard Bounded Model Checking.

• Try to Complete instructs the solver to use induction techniques to provide conclusive
result when a property holds. This option should be used with care, as it may increase
computation times significantly.

Running Model Checking and inspecting results

After either a Model Checking technique has been chosen among the available ones, it is
possible to run the model checker.

One or more properties has to be selected in the Properties pane (see Figure 9.35).
Clicking the button Run Model Checking will sequentially invoke the model checker for

each selected property, and the truth value of each property is shown by an icon in the MC

column at the end of each computation (see Figure 9.38).

Figure 9.38: The Model Checking pane with some properties model checked.

Double-clicking the icon will show the complete result information about the property
which the icon is associated to (see Figure 9.39).

If when clicking the button Run Model Checking only one property is selected, then the
result pane will show the result with no need for double-clicking the icon in the MC column.

There are two possible outcomes in the result pane:

November 8, 2018 COMPASS Toolset User Manual 76

Figure 9.39: Results of model-checking a false property

Figure 9.40: The model checking succeeded

Figure 9.41: A counterexample generated by model checking

1. if a property is satisfied an affirmative answer is shown (compare Figure 9.40),

2. if a property is not satisfied, a counterexample trace is shown (compare Figure 9.41).

When a counterexample trace is produced, the trace can be inspected aimed by filters and
all the features already presented in the Section 9.4.2.

November 8, 2018 COMPASS Toolset User Manual 77

Figure 9.42: Zeno analysis with expanded options

9.4.5 Zeno Analysis

The Zeno Analysis pane, see Figure 9.42, is used to check if a mode of the SLIM model is Zeno,
or if it contains a timeclock, as explained in more detail below. A mode in a timed/hybrid
SLIM model is Zeno if all the finite paths that reach the mode cannot be extended of an
infinite non-Zeno path (a path where time diverges). Zeno modes should be avoided in the
model, since they represent modes of the system where time cannot diverge. This situation
can be due either to a timelock (i.e. a mode where time cannot diverge) or to cycles where
time cannot diverge (intuitively, these cycles represent unrealistic paths of the system that
perfrom an infinite sequence of computation steps in a finite amount of time).

The underlying model checker allows for Zeno analysis of infinite state (hybrid/time) SLIM
models. In this case the SAT and K-Zeno bounds and model extended by fault injections
options are available.

After the Zeno Analysis options have been selected, it is possible to run the Zeno analysis.
One or more Zeno modes must be selected in the box pane. Clicking the button Run Zeno
Analysis will sequentially invoke the model checker for each selected Zeno mode, and the result
of each Zeno modes is shown at the end of analysis. There are five possible outcomes in the
result pane:

1. if the result for a mode is ZENO, a counterexample trace that reaches the mode is shown

2. if the result for a mode is NON ZENO, an infinite counterexample trace that reaches
the mode is shown

3. if the result for a mode is UNREACHABLE, the mode is not reachable, not even with
a finite path, and no counterexample trace is shown

4. if the result for a mode is NOT PROVED, the check searched for Zeno paths up to the
selected K-Zeno bound. In this case, the check did not find any counterexample trace

November 8, 2018 COMPASS Toolset User Manual 78

Figure 9.43: Time Divergence

5. if the result for a mode is NOT FOUND, the check cannot find a Zeno-path up to the
SAT Bound selected and no counterexample trace is shown

9.4.6 Time Divergence Analysis

The Time Divergence pane, see Figure 9.43 is used to detect time divergent clocks in the model.
A clock diverges if there exists a trace where its value grows arbitrarily. The implemented
time divergence analysis asks the user for the maximum bound of the clock, and checks if
there is a path of the system where the clock value is greater than the provided bound.

After the time divergence options have been selected (SAT Bound), it is possible to run
the time divergence analysis. One or more clocks must be selected in the box pane and it is
possible to specify the bound and time scale unit. Clicking the button Run Time Divergence
Analysis will sequentially invoke the model checker for each selected clock, and the result for
each clock is shown when the analysis is completed. There are three possible outcomes in the
result pane:

1. if the result found for a clock and a bound is UNBOUNDED the tool shows a finite
counterexample trace that reaches a state where the value of the clock is greater than
the selected Clock Bound is shown.

2. if the result found for a clock and a bound is BOUNDED, then the tool proved that the
clock value is always lower or equal than the selected Clock Bound, and no counterex-
ample trace is shown.

3. if the result found for a clock and a bound is UNKNOWN, the tool proved that the value
of the clock cannot be greater than the specified Clock Bound in all the paths of the
system shorter thatn the selected SAT bound. However, the check did not prove that

November 8, 2018 COMPASS Toolset User Manual 79

Figure 9.44: Correctness

the clock value is bounded for all the possible system’s traces. Also in this case there
are no counterexample traces.

9.4.7 Contract-based Verification

This panel allows the same contract refinement validation to be performed as described in
Section 9.2.2, with the addition of Monolithic Verification. The Checks configuration options
allows the verification to be performed to be selected. By default, Compositional Verification
is selected and performs both contract refinement analysis, as well as monolithic verification.
When Alternative Checks is expended, both analyses can be selected individually. See also
Figure 9.44.

Steps

1. Select the SLIM model from the Model pane

2. On the left hand side, select a contract from the Contracts pane; this enables the button
Run

3. Select the Check and the Algorithm for the analysis

4. The user can now run the analysis by clicking on the button Run;

In figure 9.45 Contract-based Verification analysis has been run on the contract termination
selecting the Compositional check; all components results to be ok.

9.5 Performability Analysis

Performability analysis is used to quantitatively analyze a SLIM model from a probabilistic
perspective. It requires that fault injections are specified over the SLIM model with proba-

November 8, 2018 COMPASS Toolset User Manual 80

Figure 9.45: Contract Based Verification - Compositional Check

Figure 9.46: Main Performability view

bilistic events.

Steps

1. Load the SLIM model (see Section 6.1).

2. Specify fault injections (see Section 6.3).

3. Specify probabilistic properties (see Section 7).

4. Click on Performability.

5. Check one of the probabilistic properties.

6. (Optional) Configure the tool options.

7. Click Run. This runs performability analysis.

November 8, 2018 COMPASS Toolset User Manual 81

Figure 9.47: Performability Options

Only one probabilistic property can be analyzed at a time. To stop an analysis, click the
Stop button. The performability tool parameters can be configured as shown in Figure 9.47.
The tool to be used can be selected, and the error bound (for the IMCA tool) can be specified.

When performability analysis has finished for a reachability property, a graph appears
(see Figure 9.48. The graph describes the cumulative distribution function for the chosen
probabilistic property. The y-axis is the probability. The x-axis is the upper time bound. A
point (x, y) on the graph means that the chosen probabilistic property holds with probability
y from the lower time bound (specified in the property) up to the time x. For this reason,
the graph always stays constant or is increasing, as the at the next upper time bound, the
probability is always equal or higher. The maximum probability, indicated in red, denotes the
probability that the property holds from the lower time bound up to the upper time bound
(both specified in the property).

Note that if the propositions in the probabilistic property already hold from the initial state
and the lower time bound is 0, the probability is always 100% over the complete duration.
This follows from the fact that the initial state starts at time 0.

Due to non-determinism, it is possible that two functions are shown in the graph, indicating
the minimum and maximum probabilities. This indicates that the probability of the properties
lies somewhere between these two functions.

For expected time properties, only the value of the property will be displayed, indicating
the time that is expected to be required to reach the state in which the property is satisfied.
Similarly, for long-run average properties, only the percentage is displayed that indicates the
average time that is spend in states that satisfy the property.

Note that for long-run averages values only make sense if they are specified for states that
contain a probabilistic transition. This is due to the “maximal progress assumption”, that
specifies that the residence time of a non-probabilistic state is zero. Therefore, the average
waiting time in such states is 0%. Furthermore, non-zero values can only occur for states that
occur infinitely often. This is due to the fact that the long-run average is measured over an
infinite amount of time, and as such states that occur only finitely often do not add to the
overall waiting time.

Tool settings

Performability analysis can be performed using two different tools: MRMC and IMCA. By
default, the toolset will automatically detect and select the tool that best matches the given
inputs. It is possible to override this by selecting the corresponding tool from the drop-down
list. However, neither tool supports the full spectrum of performability analyses, and if analy-
sis is not possible with the currently selected tool a message will be displayed (see Figure 9.49).
The MRMC tool is capable of analyzing deterministic models only for all probabilistic reach-
ability properties. The IMCA tool can analyse non-deterministic models for all probabilistic
reachability properties, as well as long-run average and expected time properties. However,
for reachability properties that specify an time interval starting from a non-zero value, the

November 8, 2018 COMPASS Toolset User Manual 82

Figure 9.48: Result of Performability Analysis

Figure 9.49: Result of Performability Analysis using an incompatible tool

graph is not available, and only the final reachability property is displayed.

Deadlock Avoidance

For all analyses, deadlock checking is recommended to ensure that the model is globally
deadlock free (see Section 9.4.3). To ensure that your models are deadlock free, we strongly
discourage you to add unguarded self-loops in the nominal model. This aggressively reduces
the ability to do performability analysis. The semantical reason for this is the “maximal
progress assumption”. An unguarded self-loop is always enabled, and as self-loops in the
nominal model always have preference over probabilistic transitions in the error model, the
latter are cut away. Our recommendation is to avoid deadlocks by solving the true underlying
problem of the deadlock.

November 8, 2018 COMPASS Toolset User Manual 83

Non-Determinism

Non-determinism has two sources, the probabilistic property and the model itself. To avoid
non-determinism we recommend you to:

• Only specify probabilistic properties over error states (like “sensors.sensor1.error =

error:Dead”). Non-determinism is more likely if the property also reasons over values
of data elements or modes in component implementations.

• Ensure that all error events in the error model have a poisson rate associated. Non-
determinism is more likely if probabilistic information is missing.

9.5.1 Relation to Fault Tree Generation

Both performability analysis and Fault Tree Generation (see Section 9.6.1) are based on the
state space of the system. The difference lies in the abstraction. Whereas fault tree generation
abstracts the state space into a tree shape, performability analysis considers a more fine-
grained abstraction of the state space using a notion of weak bisimulation equivalence. Both
abstractions have their drawbacks. Fault tree generation generates at most PAND-gates for
capturing orderings of events. Performability takes more subtle orderings in account, like
those induced by repairs. The drawback is that this increased range of expressiveness limits
the supportable systems to deterministic and deadlocking systems. The theory to practically
support non-determinism and non-deadlocking systems is future work.

The degree of abstraction of fault tree evaluation versus performability has an impact on
the computed probabilities. As performability abstracts the state space in a more fine-grained
manner than fault tree evaluation, its computed probabilities reflect the input system better.

9.5.2 Choice of Duration Parameter

The unit of time used by the time bounds in the probabilistic properties and the one in which
the rates are expressed must be semantically of the same order. Thus if for example the rates
are expressed per hour, the time bounds must also be expressed per hour. The granularity of
the chosen time unit has an effect on the numerical performance. We recommend the coarsest
time unit possible without losing numerical significance. This leads to the fastest performance
and the highest achievable numerical stability.

9.5.3 Choice of Error bound Parameter for IMCA

The error bound indicates to what accuracy the results are computed. That has a direct
influence of the number of steps, and therefore the time, required to compute the results. The
number of steps is determined by three factors: The error bound (inversely quadratic), the
maximal exponential rate (quadratic) in the model and the upper time bound of the property
(proportional). By lowering the error bound, more accurate results can be obtained, and the
cost of calculation time. An error bound of 0.01 indicates that the results is accurate up to
1%.

In order to speed up modeling, a higher error bound may be specified initially to get faster
results. This allows for quick iteration of the model or property specifications. Afterwards, a
lower error bound can be used to get more fine grained results.

November 8, 2018 COMPASS Toolset User Manual 84

9.5.4 Numerical Stability for MRMC

Numerical stability is composed of three intertwining factors: the approximation error, the
rounding errors and the errors due to overflowing and underflowing.

The approximation error is due to the used numerical algorithm. The algorithm is essen-
tially a finite approximation of the infinite expression that represents the probabilities. The
remaining infinite terms that are not accounted for in the finite approximation is the approx-
imation error. The Krylov algorithm works as an iterative algorithm that expands the size of
the finite expression until a predefined error bound is met. The current error bound is set to
10−6, meaning that the approximation is analytically correct up to 6 digits behind the point.

The rounding errors occur during most arithmetic operations and depend on the input
and the arithmetic operation itself. As numbers are represented using a finite amount of bits,
arithmetic operations over them can lead to new values that cannot be represented sufficiently
with the machine word size (32-bits or 64-bits, depending on the used machine). Rounding
errors are not accounted for in the error bound of 10−6. Overflowing and underflowing occur
when the computed (intermediate) results are too small or too large to be represented using
the machine word size. Depending on the machine architecture, a NaN or 0 becomes the result
instead. Both overflows and underflows are not checked by the current implementation.

Since the computed probabilities are influenced by these three factors, of which only the
approximation error is controllable, we provide a table of benchmarked models (cf. Table 9.2)
for which we validated that the computed probabilities are numerically correct despite the
presence of the three sources of possible instabilities. Note that the states and transitions
metrics are derived from the underlying Markov chain that is computed from the system’s
state space, and that the Markov chain is strictly smaller than the latter. The user can check
the Markov chain’s metrics by opening the .tra file in the debugging folder. The stiffness is
the ratio between the smallest and largest rates and are derived from the occurrence rates in
the error models. This table must be considered as a guideline.

Model States Transitions Stiffness

CSPS 3072 14848 1600
TQN 861 2859 400
PTP 1024 5121 0.5
ER 4011 11431 4000000
WGC 1329669 9624713 6164

Table 9.2: Model properties of the case studies.

9.5.5 Simulation

In case performability analysis by means of Markov models is not available, Simulation can
be used instead. Simulation is performed by means of Monte Carlo analysis, which uses a
statistical approach to generate the resulting performability metrics. The main simulation
view contains some settings to control the accuracy and type of simulation, see Figure 9.50.
The error bound controls the size of the error margin in the resulting probability, where a
bound of 0.05 means the result lies within +/− 5%. The confidence determines the likelihood

November 8, 2018 COMPASS Toolset User Manual 85

Figure 9.50: Simulation Performability view

the resulting probability matches the actual probability. Due to the fact that a simulation
is used, the result cannot be guaranteed with a confidence of 100%, but can be determines
arbitrarily close to it. Finally, the strategy determines how non-deterministic time intervals
are treated.

Not all probabilistic properties are supported. Simulation is limited to only those properties
that do not contain nested probabilistic operators. When using the property patterns, that
means probabilistic response patterns are not supported. Furthermore, the expected time and
long-run average metrics are not supported either.

Non-determinism

Due to the nature of the simulation semantics, the model must be assumed to be fully prob-
abilistic, meaning non-determinism is not allowed. In case non-determinism is present in the
model, it is resolved in the following ways:

• Non-deterministic choices of transitions are resolved in an equi-probabilistic manner, i.e.,
all choices are assigned the same probability.

• Non-deterministic time delays are resolved according to the configured strategy:

– ASAP: Take a transition as soon as it is available;

– Local: Take a transition at a random time as determined by its local invariant;

– Maxtime: Delay all transitions as much as possible;

– Progressive: Like Local, but permits delaying up to a time point at which point a
transition is not available.

9.6 Safety and Dependability Analysis

The Safety window of the toolset allows the user to check the safety of the model, check how
failure states can be reached, and which sequences of events can produce them. It is composed
of six sub-panes:

November 8, 2018 COMPASS Toolset User Manual 86

Figure 9.51: The main Safety pane

1. Fault Tree Generation allows the user to generate a fault tree that shows the minimal
sequence of events that may lead to a failure state

2. Failure Mode and Effects Analysis shows tabulates all the possible combinations of events
that may lead to one or more failure states

3. Fault Tolerance Evaluation computes a measure of fault tolerance, given a set of already
generated fault trees, based on the cardinality of their cut sets

4. (Dynamic) Fault Tree Verification plots the probability graph given a (dynamic) fault
tree and a probabilistic property specified over it

5. (Dynamic) Fault Tree Evaluation computes the probability of the top-level event to
occur along with the criticality

6. Hierchical Fault Tree Generation allows user to generate a fault tree based on contracts

The image in Figure 9.51 shows a screenshot of the window before any interaction with the
user: The Properties list should not be empty, in order to run the analyses described in this
section.

9.6.1 Fault Tree Generation

The Fault Tree Generation pane shows for a given property (created with the properties pane)
which are the minimal combinations of events that are possible explanations for the the failure

November 8, 2018 COMPASS Toolset User Manual 87

Figure 9.52: An example of fault tree

specified in the property.
Three possible engines are available:

1. IC3 (the defalt)

2. BDD (if the model is not hybrid)

3. SAT

Moreover, the Dynamic option is not supported for hybrid models (compare section 9.1).
For more information on the ’sat bound’ option see Section 9.4.4.

Steps

1. Select the SLIM model from the model pane.

2. Specify one or more fault injections.

3. Specify a property to check in the properties pane.

4. In order to generate a fault tree for a specified property, the user has first to select the
property. As a consequence, the Generate Fault Tree button becomes enabled.

5. After clicking on the Generate Fault Tree button, a popup appears with a fault tree
displayer inside. The fault tree shows how it is possible to reach the state corresponding
to the property, i.e. what are the sequences of events that may cause the failure, linked
by ’and’ and ’or’ gates (compare Figure 9.52). In this example there are:

(a) one branch (called cut set) with a single event that causes the fault,

(b) two branches with a sequence of two events that together cause the fault (linked
by an ’and’ gate), and

(c) one branch with a sequence of three events that together cause the fault (linked by
an ’and’ gate).

The fault tree generated will be stored, in order to be used for other analysis, (e.g. for Fault
Tree Evaluation, see Section 9.6.5) that require a property associated with a fault tree in
order to work.

November 8, 2018 COMPASS Toolset User Manual 88

Figure 9.53: Activating dynamic fault tree generation

Figure 9.54: Activating probabilistic fault tree generation

9.6.2 Dynamic Fault Tree Generation

The dynamic fault tree generation can be done using the same views shown in Section 9.6.1,
with the checkbox Dynamic activated, as shown in Figure 9.53. The difference between the
dynamic fault tree generation and the fault tree generation is that the “dynamic” one shows
also the precedence of the events (i.e., an event must hold before another one in order to reach
the failure) using the “priority and”, in addition to the “and”, gate in the fault tree. Note
that the dynamic fault tree generation is disabled when the model is hybrid (see Section 9.1).

9.6.3 Probabilistic Fault Tree Generation

The probabilistic fault tree generation can be done using the same views shown in Section 9.6.1,
with the checkbox Compute Probabilities activated, as shown in Figure 9.54.

In this case, the box containing probabilities for each fault becomes active and can be
edited by the user; the generated fault tree will show also the probabilities of the different
nodes (see for instance figure 9.55).

November 8, 2018 COMPASS Toolset User Manual 89

Figure 9.55: Example of probabilistic Fault Tree

9.6.4 Failure Modes and Effect Analysis

This pane allows the user to generate, in tabular form, the set of combinations of events that
may cause a given failure. If the checkbox dynamic is activated, the order of the events is
important, otherwise, it is not.

In Figure 9.56 the main view of this analysis pane is shown.

Steps

1. Select the SLIM model from the Model pane.

2. Specify one or more fault injections.

3. Specify one or more property to check in the Properties pane; this will enable the button
Generate FMEA Table (compare Figure 9.57).

4. The user can now run the analysis by clicking on the button Generate FMEA Table,
that fills the table below with the results of the computation, as shown in Figure 9.58.

In this example, the results show that in order to cause the event

“value = 0 and filters.mode = mode:Backup”

(i.e. filters fails twice) there is

1. three combinations of cardinality two:

November 8, 2018 COMPASS Toolset User Manual 90

Figure 9.56: The Failure Modes and Effect Analysis pane

Figure 9.57: The Failure Modes and Effect Analysis enabled

November 8, 2018 COMPASS Toolset User Manual 91

Figure 9.58: The Failure Modes and Effect Analysis results

Figure 9.59: The Compact FMEA option

(a) sensors.sensor1._errorSubcomponent.__die = True &

filters.filter2._errorSubcomponent.__die = True

(b) sensors.sensor1._errorSubcomponent.__drift1 = True &

filters.filter2._errorSubcomponent.__die = True

(c) sensors.sensor1._errorSubcomponent.__glitch = True &

filters.filter2._errorSubcomponent.__die = True

as shown in the Failure Model column,

2. some combinations of cardinality three, which we do not list here for brevity, but that
are visible in Figure 9.58.

The highest computed cardinality can be specified in the cardinality field as shown in
Figure 9.58. In the example this value is set to 3.

If the dynamic option is enabled, the order of the events is taken into account (i.e., if an
event occurs before another one, then it must occur before the second one), otherwise the
order is neglected.

The column ID represents a unique identifier has the form N -M , where N identifies the
fault configuration, and M the event it is associated with. The ID can be used to uniquely
identify a fault configuration caused by a top level event (i.e. a single row in the FMEA table).

When option Dynamic FMEA is enabled, the compaction is not available, and the values
in the ID column are N/A (Not Available).

November 8, 2018 COMPASS Toolset User Manual 92

Definition of Compact FMEA Tables

Figure 9.59 shows the option for enabling the generation of Compact FMEA tables. The
options Compact FMEA and Dynamic FMEA are mutually exclusive.

The goal of FMEA compaction is to improve the readability of static FMEA tables as gen-
erated by the COMPASS toolset, by avoiding computation of entries that are not interesting
from an engineering perspective. Intuitively, an entry is not interesting if it is redundant, that
is, if the corresponding fault configuration contains faults that have no effect on the top-level
event. The objective of compaction is to compute a reduced FMEA table that does not con-
tain such entries. This reduction is meaningful for monotonic systems, i.e. systems such that
whenever a fault configuration FC may raise an event E, any proper superset of FC (with
additional faults) may still cause E.

More formally, the definition of reduced FMEA tables is as follows. Let F = {F1, . . . , Fn}
be a set of faults and E = {E1, ..., Em} a set of events. A fault configuration is a subset of
faults FC ⊆ F . An FMEA table is a set of pairs (FCi, Ej), where FCi is a fault configuration
and Ej ∈ E is an event.

Given an FMEA table T , we define the corresponding reduced FMEA table, denoted TR,
as follows:

TR =
m⋃
j=1

TRj

where TRj , called the reduced FMEA table for event Ej, is defined below, by induction on the
cardinality of the FMEA table entries. Let N be the cardinality of the FMEA table TR that
we are computing. Then, we define

TRj =
N⋃
k=1

TRj (k)

where TRj (k), for k = 1, . . . , N is defined inductively as follows, where Tj(k) denotes the set of
entries of FMEA table Tj whose fault configuration has cardinality k and whose event is Ej.

(Base Case) TRj (1) = Tj(1)

(Inductive Case) (FC,Ej) ∈ TRj (k), for k = 2, . . . , N , if and only if:

• (FC,Ej) ∈ Tj(k)

• one of the following two conditions holds:

– there exists no proper subset FC ′ ⊂ FC such that (FC ′, Ej) ∈ TRj (h) for an
integer h such that h ∈ {1, . . . , k − 1}

– there exists a cover of FC, that is, a set of fault configurations FCi, and a set
of integers hi, with i = 1, . . . , l, such that FC =

⋃l
i=1 FCi and (FCi, Ej) ∈

TRj (hi), with hi ∈ {1, . . . , k − 1}

Intuitively, the first case covers the situation in which we have a “genuine” new entry in
the FMEA table, which is not subsumed by any entry of lower cardinality. The second case
formalizes the notion of (non-)redundancy by means of the notion of “cover”. Note that, by
definition, a reduced FMEA table TR is always a (possibly improper) subset of the original
FMEA table T .

November 8, 2018 COMPASS Toolset User Manual 93

Figure 9.60: The compacted FMEA table result

Figure 9.61: The Fault Tolerance Evaluation pane

Figure 9.60 shows the result of the same FMEA analysis shown in Figure 9.58, but this
time run with the option Compact FMEA enabled.

9.6.5 Fault Tolerance Evaluation

The fault tolerance evaluation window allows the user to compute a measure of fault tolerance,
given an already generated set of fault trees. Figure 9.61 shows the main view of the tool for
this feature.

Steps

1. Select the SLIM model from the Model pane.

November 8, 2018 COMPASS Toolset User Manual 94

Figure 9.62: The Fault Tolerance Evaluation main button enabled

Figure 9.63: The Fault Tolerance Evaluation results

2. Specify one or more fault injections.

3. Specify one or more property to check in the Properties pane.

4. In order to enable the button Run Fault Tolerance Evaluation, first the user has to
select one or more properties that have an associated fault tree. (In order to associate a
fault tree to a given property it is sufficient to run fault tree generation as described in
Section 9.6.1). An example is shown in Figure 9.62.

5. the user can then click on the button Run Fault Tolerance Evaluation that fills the table
shown in Figure 9.63

The analysis counts the number of unique cut sets computed for all the generated fault trees,
divided on the basis of their cardinality. As an example, the results in Figure 9.63 show that
there are only two cut sets of cardinality zero. Another example is given in Figure 9.64. Here
there are:

1. One cut set with cardinality 1

2. Two cut sets with cardinality 2

3. Two cut sets with cardinality 3

9.6.6 (Dynamic) Fault Tree Evaluation

As evaluation over dynamic fault trees is an extended variant of evaluation over non-dynamic
fault trees, the functionality for their evaluation is combined in a pane. It is used to compute

November 8, 2018 COMPASS Toolset User Manual 95

Figure 9.64: Another example of Fault Tolerance Evaluation results

Figure 9.65: Entering the input values for (Dynamic) Fault Tree Evaluation.

the probabilities that the gates and the top-level event are triggered from time point 0 until
the upper time bound.

Steps

1. Perform (Dynamic) Fault Tree Generation (see Section 9.6.1).

2. Click on the “(Dynamic) Fault Tree Evaluation” tab (see Figure 9.65).

3. In the properties pane on the left, check a property that has a (dynamic) fault tree
associated.

4. Enter the upper time bound. The mission time will be then set from 0 to that bound.

November 8, 2018 COMPASS Toolset User Manual 96

Figure 9.66: Result of (Dynamic) Fault Tree Evaluation.

Figure 9.67: Lack of basic events to poisson rates error upon (dynamic) fault tree evaluation.

5. Enter the Criticality for the triggering of the top-level event of the chosen fault tree.
This number is used for Criticality Evaluation (see Section 9.6.7)

6. Click on “Start Fault Tree Evaluation”

The result of (dynamic) fault tree evaluation is the same (dynamic) fault tree with probabilities
attached to the gates and the top-level event (see Figure 9.66). The probabilities are denoted
after the “P = ” part of a gate.

Note that two errors could be issued upon (dynamic) fault tree evaluation:

• Not all basic events have a poisson rate associated. An error dialog occurs as shown in
Figure 9.67. To prevent this from occurring, we recommend you to ensure that all error
events in error model implementations have poisson rates associated with it.

• Non-determinism could occur. The foremost reason for this to happen is that basic-
events are shared by different cut sets, and that upon triggering of a shared event, the
top-level event could be triggered. The underlying reason is non-determinism in the
SLIM model or that the top-level event is underspecified. We recommend you to check
whether the purely propositional property truly represents the top-level event.

Evaluation of Dynamic versus Static Trees

Dynamic and static fault trees are computed from the system’s state space, and the difference
lies in that the former captures in more detail ordering of events due to the addition of more

November 8, 2018 COMPASS Toolset User Manual 97

Figure 9.68: Dynamic Fault Tree with basic events E1 to E5. Events E3 and E4 are ordered,
and so are E1 and E5.

expressive gates. Even though static fault trees also account for orderings, they are only
captured coarsely using the boolean gates. The increased amount of detail in dynamic fault
trees may cause that an evaluation leads to more precise results when the same evaluation is
performed on its static counterpart. For static fault trees, the combinations of basic events
that trigger a top-level event are fixed. Hence, the probability of a top-level event can be
determined purely by multiplication/addition (given an AND/OR gate) on the probabilities
of the basic events. The probability of the basic events are computed using 1 − eλt, where λ
is the failure rate and t is the duration.

In the dynamic case, where ordering of events is also represented, that same order is then
accounted for together the duration for the computation of the top level probability. Consider
Figure 9.68 and a duration t. Events E3 and E4 are ordered such that E3 has to occur before
E4. Due to this order, event E3 occurs within a time t1, and then event E4 occurs within a
time t− t1. This shows that the time left for event E4 to occur depends on the amount of time
spent waiting for event E3 to occur. For computing the probability of E4 occurring, this then
more formally expressed as Pr(E4 occurs within t − t1 | E3 occurs within t1). If the elapsed
times are exponentially distributed, then its memory-less property allows to rewrite this to
simply Pr(E4 occurs within t− t1).

9.6.7 Criticality Evaluation

Criticality evaluation is performed as an additional step of (dynamic) fault tree evaluation (see
Section 9.6.6). The entered Criticality number is used to compute the severity of triggering

November 8, 2018 COMPASS Toolset User Manual 98

the gates and the top-level event. The criticalities are denoted below the probability, namely
after the “C = ” part of a gate. The criticality is simply the severity times the probability.

Criticality provides an incremental amount of information upon fault tree evaluation. The
user has the freedom to choose an appropriate severity classification and the freedom how to
interpret the criticalities.

9.6.8 (Dynamic) Fault Tree Verification

(Dynamic) Fault Tree Verification is an advanced and more expressive way to analyse (dy-
namic) fault trees probabilistically. It uses the property management system to define prop-
erties over (dynamic) fault trees and then plot the cumulative distribution function of that
property.

Steps

1. Perform (Dynamic) Fault Tree Generation (see Section 9.6.1).

2. Click on the “(Dynamic) Fault Tree Verification” tab (see Figure 9.65).

3. In the properties pane on the left, check a property that has a (dynamic) fault tree
associated.

4. Choose a probabilistic pattern. This is the probabilistic property used to analyse the
chosen (dynamic) fault tree.

5. Fill in the placeholders. The grammar of a legal placeholder is the nearly the same as for
atomic propositions in properties (see Section 7.1). All non-arithmetic operators outlined
there are supported. The only difference is the references to ports, data subcomponents,
mode variables, mode names, error variables and error state names. They are not al-
lowed. Instead, you can reason over the fault configurations and the gates identifiers.
They can be viewed in the fault tree viewer under “View” and “Hide Probabilities” (see
Figure 9.70).

6. Click on “Run”

The result is a graph (see Figure 9.69) which has to interpreted similarly as the graphs pro-
duced by performability evaluation (see Section 9.5). The main difference is that the graphs
are produced with the (dynamic) fault tree as the underlying model. For performability eval-
uation, the graphs are produced using the SLIM model as the underlying model.

For (dynamic) fault tree verification, the same notes apply as for (dynamic) fault tree
evaluation. Thus, we recommend you to ensure that all basic events have a poisson rate
associated with it and to check whether the used probabilistic property is underspecified.

9.6.9 Hierarchical Fault Tree Generation

The Hierarchical Fault Tree Generation pane allow safety analysis to be performed on the
model structure based on its contracts. This is similar to safety analysis as described in
Sections 9.6.1 and 9.6.5, but makes use of the hierarchical composition of the model. For an
overview, see Figure 9.71

November 8, 2018 COMPASS Toolset User Manual 99

Figure 9.69: Result of (Dynamic) Fault Tree Verification.

Figure 9.70: Showing the gate and fault configuration labelling in the fault tree viewer.

November 8, 2018 COMPASS Toolset User Manual 100

Figure 9.71: Safety

The options Model extended by Fault Injections and Add fairness assumption on component
execution are the same is described in Section 9.2.2. To perform Safety analysis, at the least
one contract needs to be selected from the left hand side contract list.

Fault Tree Computation

When selecting Fault Tree Computation, a fault tree can be generated from the model. Two
possible analysis engines can be selected, BMC/BDD and klive. See Section 9.4 for their
meaning. After running Fault Tree Computation, the column FT on the left hand side contract
list will show GEN to indicate a fault tree has been generated. When selecting a contract
with a generated fault tree, the View button allows it to be shown.

When selecting All Contracts in the contract list, a fault tree will be generated for each
contract in the list.

Fault Tolerance Evaluation

The Fault Tolerance Evaluation can generate fault tolerance metrics for the selected contract,
when this contract has an associated fault tree (the FT columns indicates GEN). This will
calculate the cutsets for the fault tree and their cardinality, as well as indicate the number of
faults due to the environment. For more details, see Section 9.6.5.

9.7 FDIR: Fault Detection, Isolation and Recovery

The FDIR pane allows the user to analyze the capability of a system to detect, isolate, and
recover from faults. It is based on the notion of “observable/alarm” signals in the model. This
analysis groups four types of checks:

1. Fault Detection Analysis that allows the user to check whether a fault can be detected;

2. Fault Isolation Analysis that allows the user to check whether a fault can be isolated;

November 8, 2018 COMPASS Toolset User Manual 101

3. Fault Recovery Analysis that allows the user to check whether the system can keep
working, even if a fault has occurred; and

4. Diagnosability Analysis that allows the user to obtain information on the diagnosability
of the system.

Figure 9.72 shows the main view of the Fault Detection, Isolation and Recovery pane.

Figure 9.72: The FDIR main pane

By default, the Fault Detection Analysis view is displayed. Below we describe each of the
panes in more detail.

9.7.1 Fault Detection Analysis

This pane allows the user to find out which alarms (if any) will be eventually raised whenever
the selected property becomes true. The alarms correspond to the possible detection means
for the property. The property must be purely propositional. The corresponding pane is the
one shown in Figure 9.72.

Steps

1. Select the SLIM model from the Model pane.

2. Specify one or more fault injections.

November 8, 2018 COMPASS Toolset User Manual 102

3. Specify a property to be checked in the Properties pane.

4. Select the property to check in the Properties section of the Fault Detection Analysis
pane (compare Figure 9.73).

5. Then, clicking on the button Run Fault Detection fills the list of alarms, as shown in
Figure 9.74. Each alarm is one possible detection means for the fault expressed by the
chosen property.

Figure 9.73: The fault detection analysis main pane enabled

Figure 9.74: The fault detection analysis pane when an empty set of sensor is computed

In the example in Figure 9.74, no alarm is computed (that is, the fault is not detectable); if
we try to change fault, then the system will respond that the mon.alarm_battery, mon.alarm_battery1
and mon.alarm_battery2 sensors will be raised (that is, e.g. mon.alarm_battery is a possible
detection means) if the property becomes true, as shown in Figure 9.75.

9.7.2 Fault Isolation Analysis

Fault isolation analysis creates one or more fault tree(s), one for each alarm signal in the
model. For each alarm, a fault tree will be generated in order to show the combinations of
events that may cause the fault. In case of perfect isolation, only one combination (typically
with cardinality one) will be generated. The analysis works without selecting any property
(note, in fact, that the Properties pane is disabled), as shown in Figure 9.76.

Steps

1. Select the SLIM model from the Model pane.

2. Specify one or more fault injections.

November 8, 2018 COMPASS Toolset User Manual 103

Figure 9.75: The fault detection analysis pane when some sensor will be raised

Figure 9.76: The Fault Isolation Analysis main pane

3. After clicking on the Run Fault Isolation button, the table shown in Figure 9.77 is filled
with the names of the events and gates files (one for each fault tree).

4. By double clicking on a row, or with a single click on a row and a single click on the
button Show Fault Tree, the fault tree displayer will be automatically invoked with
the event and gate files in the selected row, and will show the selected failure as in
Figure 9.78.

In this example, for the monitor.detected signal there are several ways in which it can
be raised, as shown in the tree. Hence, fault isolation is not perfect.

November 8, 2018 COMPASS Toolset User Manual 104

Figure 9.77: The fault isolation analysis pane results

Figure 9.78: The fault tree displayer invoked in the fault isolation analysis

9.7.3 Fault Recovery Analysis

This pane provides the user information about the recoverability from possible faults. It uses
a model checker to prove if the selected recoverability property holds or not (the options are
the same as for model checking, see Section 9.4.4 for further information). The main view
looks like in Figure 9.79.

Steps

1. Select the SLIM model from the Model pane.

2. Specify one or more fault injections.

3. Specify a property to check in the Properties pane. After selecting one or more proper-
ties, the button Run Fault Recovery will be activated, as shown in Figure 9.80.

4. After clicking on the button Run Fault Recovery, the model checking view will be shown.
(See Section 9.4.4 for more information about the filters and how to read the trace).

(a) If the fault is not recoverable the view looks like the one in Figure 9.81. In this case
the trace shows an execution of the model in which the property is not satisfied

(b) If the property is satisfied instead, the view looks like the one in Figure 9.82.

November 8, 2018 COMPASS Toolset User Manual 105

Figure 9.79: The fault recovery analysis main pane

Figure 9.80: The fault recovery analysis enabled

Figure 9.81: The fault recovery analysis pane when the fault is not recoverable

November 8, 2018 COMPASS Toolset User Manual 106

Figure 9.82: The fault recovery analysis pane when the fault is recoverable

9.7.4 Diagnosability Analysis

The safety engineer can use the diagnosability analysis functionality in COMPASS to obtain
information on the expressiveness of sensor data. Simply put, one is interested to know
whether the observables specified in the SLIM model files are enough to infer certain properties,
specifically if they are adequate to diagnose the presence of faults.

Figure 9.83: Diagnosability analysis view

Preconditions These are the preconditions for running diagnosability analysis.

1. Load the nominal and error SLIM models.

2. Perform the desired fault injections.

3. In the Properties pane, specify one or more properties to check in the following steps.

Note all properties to be used in diagnosability analysis have to be propositional.

November 8, 2018 COMPASS Toolset User Manual 107

Steps

1. Click on FDIR, then on Diagnosability Analysis.

2. (optional) Choose one or more path restrictions by clicking the corresponding property
in the left pane, and adding it to the list in the center by using the right-arrow button;
the left-arrow button can be used to remove path restrictions; furthermore, they can be
rearranged by drag-and-drop.

3. (optional) Choose one diagnosability property context by clicking one in the list of
properties, and clicking the “+” button. Use the “–” button to clear the context.

4. (optional) In the case of a hybrid model, bounded model checking will be used. The
default value for the bound is 10, but this value can be changed by the corresponding
setting box in the Diagnosability Analysis pane.

5. Choose the diagnosability property by clicking the desired entry in the Properties list.

6. Click Run Check. An activity bar at the bottom of the screen will show the ongoing
activity, and the appearing Stop button can be used to interrupt the process.

Result The result will be announced in a text message right next to the Run Check button.
This can be either diagnosable, not diagnosable (plus counterexample), or unknown (in case
of hybrid models where no counterexample has been found within the given bound).

In case a property was found to be non-diagnosable, a trace window will be opened con-
taining two trace views, which constitute the counterexample for diagnosability. Both traces
exhibit equal observational data in synchronous states. There will also be two synchronous
states which both satisfy the context property, but one of them satisfies the given diagnos-
ability property, and the other one does not (but satisfies its negation). Furthermore, if any
path restrictions were specified, each of them appears in the given total order in both traces
preceding the aforementioned two synchronous states; notice that these path restrictions do
not need to be synchronous.

Figure 9.84: Counterexample for diagnosability

November 8, 2018 COMPASS Toolset User Manual 108

Example For demonstration purposes, let us assume we are working on the Adder model
that can be found in the example files. Note that only bit1.alarm1, bit2.alarm1, and
adder.alarm1 are observable.

1. We load the nominal model Adder.slim and the error model Adder_err.slim.

2. We assume that component Bit1 can break and perform a fault injection such that on
error state inverted, bit1.output becomes “not input”, and bit1.alarm1 becomes
true.

3. With this background, we are interested to see if we can diagnose a corrupt adder.output
value. First, we define a context property in the property manager to specify what case
we are interested in. Let us require that both rnd1 and rnd2 deliver a value of 1; also,
our analysis is limited to states in which a computation is performed. We therefore
define the property “run and rnd1.output and rnd2.output”.

4. The context implies that if bit1 is not broken, the adder output should be 0. Now the
question is whether we are able to diagnose that the value of adder.output is 1, when
it should be 0. We thus define the property adder.output.

5. At this point, we go to the diagnosability analysis window, select the context property,
click the plus sign for specifying the property context, select the diagnosability property,
and click the Run Check button. The result will be displayed in the middle of the screen.

6. If we change the context to “rnd1.output and rnd2.output”, we will see that the
property is not diagnosable anymore. Two synchronous traces will be shown which
exhibit the same observations in each state; at one synchronous state, both satisfy the
property context, but one satisfies the diagnosability property while the second one
does not – it satisfies exactly the negation of the diagnosability property. This is a
counterproof for diagnosability.

7. Path restrictions can be specified by selecting properties and then adding them to the
list in the middle of the window by clicking the right-arrow button. The order of path
restriction properties can be modified by drag-and-drop. Deletion works by selecting a
property and clicking the left-arrow button. In traces returned by COMPASS you will
notice that the states containing the conflict are always preceded in the specified total
order by those path restrictions.

Hybrid models One must be careful when working with assignments to observable variables
(Boolean data ports or data subcomponents) that refer to variables with a continuous domain.
For instance, if a certain continuous value x goes from −1 to 1, it crosses the value 0. If one
of our formulas depends on the fact that x = 0, and this x is tested in an assignment to an
observable data port p, the observation that x = 0 might go by unnoticed.

The reason for this is that the discretization of the continuous variable for delivery to the
data port happens non-deterministically at random intervals, which means that it is possible
but not guaranteed that p detects the value x = 0.

If this however is explicitly desired, discretization at x = 0 must be manually specified in
the SLIM model. This can be accomplished, for example, by splitting the mode that defines
the dynamics of x into two sub-modes where the first is taken for non-positive values of x (by

November 8, 2018 COMPASS Toolset User Manual 109

requiring the invariant x <= 0), and is left when the value x = 0 is reached. To this aim, the
corresponding transition to the second sub-mode is guarded by the condition x = 0, and sets
p to the value true.

9.7.5 Fault Coverage Analysis

This pane provides the user information about the level of coverage of possible faults, depend-
ing on whether they can be detected/recovered from. It uses a model checker to prove if the
selected detection/recovery properties hold or not. The main view is shown in Figure 9.85.

Figure 9.85: The fault coverage analysis main pane

Steps

1. Select the SLIM model from the Model pane (eg. Adder recov.slim and Added err.slim).

2. Specify one or more fault injections (e.g. only the fault bit1.output := input = false).

3. Select the Fault Coverage Analysis Tab

4. Enable one or more faults (e.g., only the fault bit1.error = error:inverted)

5. Select a recoverability property for each fault. After selecting one or more properties for
fault (e.g., bit1 inverted), the button Run FCA will be activated.

November 8, 2018 COMPASS Toolset User Manual 110

6. Set the BDD or the SAT Bound options for recoverability and detection (e.g. SAT
Bound=50)

7. Set the Detection Delay as:

(a) Finite: specifies that the fault must be detected within a finite bound

(b) Fixed: it is a real value the maximum detection bound for the given fault. It is
also possible to specify the time scale unit:

i. msec

ii. sec

iii. min

iv. hour

v. day

8. After clicking on the button Run FCA, when the analysis is completed, the results of
Fault Coverage Analysis will be shown (as in Figure 9.86)

(a) Fault detection analysis is run to determine if the fault can be detected by any
existing alarm. If the fault is not always detected, then it is classified as Uncovered.

(b) Fault recovery analysis is run (using the provided recoverability property), to de-
termine if the fault can be recovered from.

i. If it can always be recovered from, it is classified as Covered.

ii. Otherwise, it is classified as Uncovered.

Remark: Classification as ‘partially covered’ is not supported – it would amount to de-
ciding that a given fault is recoverable only in specific configurations. Implementation of this
feature is left for future work.

November 8, 2018 COMPASS Toolset User Manual 111

Figure 9.86: The fault coverage analysis results

Chapter 10

Support

Official support is provided within timeframe and clauses set by and
under Contract No. 4000115870/15/NL/FE/as. In all other cases
there is not warranty for this toolset and all of its documentation.

The primary channel for support is email: support requests can be send to compass-
support@lists.rwth-aachen.de.

112

mailto:compass-support@lists.rwth-aachen.de
mailto:compass-support@lists.rwth-aachen.de

Bibliography

[1] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll, and M. Roveri. The
COMPASS approach: Correctness, modelling and performability of aerospace systems. In
Proc. 28th Int. Conf. on Computer Safety, Reliability and Security (SAFECOMP 2009),
volume 5775 of LNCS, pages 173–186. Springer, 2009.

[2] Aaron R. Bradley. SAT-Based Model Checking without Unrolling. In Verification, Model
Checking, and Abstract Interpretation - 12th International Conference, VMCAI 2011,
Austin, TX, USA, January 23-25, 2011. Proceedings, pages 70–87, 2011.

[3] Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta. IC3 Modulo
Theories via Implicit Predicate Abstraction. In Tools and Algorithms for the Construction
and Analysis of Systems - 20th International Conference, TACAS 2014, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2014,
Grenoble, France, April 5-13, 2014. Proceedings, pages 46–61, 2014.

[4] Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta. Verifying LTL
Properties of Hybrid Systems with K-Liveness. In Computer Aided Verification - 26th
International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL
2014, Vienna, Austria, July 18-22, 2014. Proceedings, pages 424–440, 2014.

[5] Koen Claessen and Niklas Sörensson. A liveness checking algorithm that counts. In
Formal Methods in Computer-Aided Design, FMCAD 2012, Cambridge, UK, October
22-25, 2012, pages 52–59, 2012.

[6] Edmund Clarke, Daniel Kroening, Ofer Strichman, and Joel Ouaknine. Completeness and
complexity of bounded model checking. In 5th International Conference on Verification,
Model Checking, and Abstract Interpretation, volume 2937 of Lecture Notes in Computer
Science, pages 85–96, 2004.

[7] COMPASS Tutorial. Technical report, COMPASS Consortium, 2016.

[8] Catalogue of system and software properties. Technical Note D1-2, Issue 4.7, COMPASS
Project, June 2016.

[9] T.A. Henzinger. The theory of hybrid automata. In IEEE Symp. on Logic in Computer
Science (LICS), pages 278–292. IEEE CS Press, 1996.

[10] Daniel Kroening and Ofer Strichman. Efficient computation of recurrence diameters. In
L. Zuck, P. Attie, A. Cortesi, and S. Mukhopadhyay, editors, 4th International Conference
on Verification, Model Checking, and Abstract Interpretation, volume 2575 of Lecture
Notes in Computer Science, pages 298–309. Springer Verlag, January 2003.

113

November 8, 2018 COMPASS Toolset User Manual 114

[11] Timo Latvala, Armin Biere, Keijo Heljanko, and Tommi A. Junttila. Simple bounded ltl
model checking. In Alan J. Hu and Andrew K. Martin, editors, FMCAD, volume 3312 of
Lecture Notes in Computer Science, pages 186–200. Springer, 2004.

[12] Slim 3.0 - syntax and semantics. Technical Note D1-2, Issue 4.7, COMPASS Project,
June 2016.

[13] Stefano Tonetta. Abstract Model Checking without Computing the Abstraction. In FM
2009: Formal Methods, Second World Congress, Eindhoven, The Netherlands, November
2-6, 2009. Proceedings, pages 89–105, 2009.

Appendix A

CLI scripts

The COMPASS toolset also comes as a set of scripts which can be run from the command
line. These CLI (Command Line Interface) scripts provide a means to interact with the toolset
using the console. It has the added advantage of automating analysis using shell scripts.

A.1 Scripts

In the following explanations the scripts are run from the top-level directory. In the examples
all the paths to files will be given with respect to that top-level directory. For example, all the
scripts themselves are placed in directory scripts. A user is assumed to change the working
directory to the top-level directory (using e.g. cd) before running the scripts.

In general the scripts take one or more SLIM files with nominal models, error models
and FDIR models as its arguments. For more details on allowed command line options see
Section A.1.29 which describes advanced options that are common to all the scripts. For
individual scripts the descriptions can be obtained by running the script with option --help,
e.g.

$> scripts/check_syntax.py --help

The scripts are Python files and require a python interpreter to be run. The following
subsections describe the available scripts in more detail.

A.1.1 Syntax Check

The simplest example of running a (test) script is

$> scripts/check_syntax.py \

documentation/examples/adder/adder_discrete/adder.slim \

documentation/examples/adder/adder_discrete/adder_err.slim

which just reads the SLIM files for the Adder example and checks it for syntactic correctness.
Since the file is syntactically correct the script outputs

File ’documentation/examples/adder/adder_discrete/adder.slim’ parsing: OK

115

November 8, 2018 COMPASS Toolset User Manual 116

A.1.2 Model Checking

Verify whether a model (optionally extended with a fault and/or FDIR model)
satisfies a (qualitative) property

Inputs

M an operational model
FM a fault model (optional)
FDM an FDIR model (optional)
P a set of properties

Outputs
true|false|unknown truth value for each property φ ∈ P
Tr A counter-example for false properties

For each property in P, true shall be returned if the property holds, or else a
counter-example trace Tr in XML should be produced

$> scripts/check_properties.py \

[--property-file=<properties_file_name>] \

[--bmc [--bmc-length=<length>]] \

[--ocra] [--klive-bound] \

[-i] file1.slim ... fileN.slim

Option –bmc forces to use Bounded Model Checking when performing LTL model check-
ing, while option –bmc-length specifies the max length to be used when performing BMC

Results are printed out to stdout, and possibly generated traces are dumped into XML
files (one file each trace).

For example:

$> scripts/check_properties.py -i \

-p documentation/examples/adder/adder_discrete/adder.propxml

documentation/examples/adder/adder_discrete/adder.slim \

documentation/examples/adder/adder_discrete/adder_err.slim

Model Checking: Formula ’never adder error: Globally, it is never (...)’ is false

Counterexample in file ’adder/adder_trace1.xml’

In the example, the first CTL formula has been found to be false, and a corresponding
counter-example has been generated in adder/adder trace1.xml.

To see the content of a trace, the trace viewer can be used:

$> scripts/view_trace.py <trace-file.xml>

By default, model checking uses a technology based on Binary Decision Diagrams (BDDs).
BDDs can be very effective and can be used for both CTL and LTL formulae. However, under
some circumstances the size of the model that is being checked can cause a blow up in memory
or in time.

In this cases, when dealing with LTL formulae only, it is possible to exploit a different
technology called Bounded Model Checking (BMC). BMC can be used to prove that a formula
is false, and in some condition it can also prove that a formula is true. This makes BMC
ideal when searching for bugs, to show that assumptions about the model (expressed as LTL
formulae) are actually false.

November 8, 2018 COMPASS Toolset User Manual 117

BMC is based on a bound that is incremented up to a maximum number that is called
problem length, and that corresponds to the maximal number of execution steps of the system
under consideration. Given a problem length K, if a LTL formulae is found false at bound j,
0 <= j < K, a counter-example with length j is returned. The formula might also be found
true, and in this case there will be no trace available. If the problem length K is reached with
no result found, the result is stated to be unknown. This means that either the property is
true, or it may be found false at a higher bound.

To use BMC when checking LTL formulae the option --bmc should be given. To optionally
set a different problem length use option --bmc-length (default is 10).

Notice that when option --bmc is specified, BMC will be used only for LTL formulae,
whereas for CTL formulae the BDD technology will be used.

$> scripts/check_properties.py \

--bmc --bmc-length=20 -i

documentation/examples/adder/adder_discrete/adder.slim \

documentation/examples/adder/adder_discrete/adder_err.slim

Model Checking: Formula ’G !run and rnd1.output = false and (...)’ is false

Counterexample in file ’Adder_trace2.xml’

Model Checking: Formula ’G !run and rnd1.output = false and (...)’ is unknown

In case we want to run MITL (Metric Interval Temporal Checking) checking, we can specify
the max bound for kliveness using the option --klive-bound.

This script can also be used to check the OCRA monolithic implementation; in this case
option --ocra must be used.

A.1.3 Model Simulation

Produce a simulation trace of an operational model (optionally extended with
a fault model and/or an FDIR model)

Inputs

M an operational model to be simulated
FM a fault model (optional)
FDM an FDIR model (optional)
C a set of user constraints on the simulation

Outputs Tr a simulation trace
Using model checking techniques, the COMPASS toolset shall produce a sim-
ulation trace of the given operational model (optionally extended with a fault
model and an FDIR model). The trace shall conform to a set of simulation
constraints. The output trace shall be generated in XML format.

$> scripts/simulate_with_bmc.py \

[--sim-length=<length>] [-i] \

-p <properties_file.xml> \

file1.slim ... fileN.slim

One simulation trace XML file will be created.

November 8, 2018 COMPASS Toolset User Manual 118

$> scripts/simulate_with_bmc.py \

documentation/examples/adder/adder_discrete/adder.slim \

documentation/examples/adder/adder_discrete/adder_err.slim

Trace of simulation can be found in ’adder/adder_trace3.xml’

The resulting trace will have a length l, which is equal to the value specified with option
--sim-length (default is 10).

To see the content of a trace, the trace viewer can be used, .e.g.:

$> scripts/view_trace.py adder/adder_trace3.xml

The simulation is obtained by randomly taking l transitions. It is possible to constrain
the simulation by specifying one or more propositional formulae as constraints. The given
formulae are conjuncted and considered as an invariant. For example if the formulae are
x > 2 and sc.y = 5, the invariant formula x > 2 and sc.y = 5 is built, and the simulation
will select only those paths that do not contradict it.

If there exists no valid trace with the requested length satisfying the given invariant for-
mulae, then no trace is produced. This can happen du to inconsistent invariants, or because
the given constraints are too strong with respect to the model.

Propositional formulae for constraints can be specified through a properties XML file.
In this example Adder with error injection is simulated with all constraints found in given

properties file, and given simulation length:

$> scripts/simulate_with_bmc.py \

--sim-length=5 -i \

documentation/examples/adder/adder_discrete/adder.slim \

documentation/examples/adder/adder_discrete/adder_err.slim

Trace of simulation can be found in ’adder/adder_trace4.xml’

A.1.4 Deadlock Checking

Check whether there are deadlocks in the model

Inputs M SLIM model
Outputs m A message saying whether the model contains deadlocks or not
Using model checking techniques, the COMPASS toolset looks for deadlocks
in the model and warns the user about it.

The following is an example of running the cli-script:

$> scripts/check_deadlocks.py \

documentation/examples/adder/adder_discrete/adder.slim \

documentation/examples/adder/adder_discrete/adder_err.slim

FSM is deadlock free

November 8, 2018 COMPASS Toolset User Manual 119

A.1.5 Fault Tree Generation

Generates a fault tree given an operational model extended with a fault model,
optionally extended with an FDIR model and a property representing the top
level event.

Inputs

M an operational model
FM a fault model
FDM an FDIR model (optional)
P a property (top-level event)

Outputs Fault Tree two files, one with events and one with gates
Using model checking techniques, the COMPASS toolset generates a fault tree
starting from an operational model extended with a fault model, optionally
extended with an FDIR model, and a property representing the top level event.
The fault tree is returned as two files, one with events and another with gates,
in the format suitable for the fault tree viewer.

$> scripts/compute_fault_tree.py -i \

-p <properties_file.xml> \

[--property-num=N] \

[--dynamic] \

[--output-xml-and-rates] \

file1.slim ... fileN.slim

The properties in the properties file have to be purely propositional. By default the fault tree
is generated for the first property, but with option --property-num it is possible to specify
which property exactly to deal with. Option --dynamic allows to generate a dynamic fault
tree, and option --output-xml-and-rates is used to tell the script to output the fault tree
in XML format and to output the rates of the basic events, which can be used for fault tree
verification and fault tree evaluation (see next sections). Running the above script generates
two files with extensions .flt events and .flt gates, respectively. For example:

$> scripts/compute_fault_tree.py \

-i --property-num 2 \

-p documentation/examples/adder/adder_discrete/adder.propxml \

documentation/examples/adder/adder_discrete/adder.slim \

documentation/examples/adder/adder_discrete/adder_err.slim

generates files adder/adder.flt events and adder/adder.flt gates. To see the content of
a fault tree, the fault tree viewer can be used:

$> scripts/view_ft.py \

--events-file <events-file.flt_events>

--gates-file <gates-file.flt_gates>

For the above example the fault tree can be viewed using the corresponding cli-script:

$> scripts/view_ft.py \

--events-file adder/adder.flt_events \

--gates-file adder/adder.flt_gates

November 8, 2018 COMPASS Toolset User Manual 120

A.1.6 Failure Modes and Effects Analysis

Generate an FMEA table given an operational model, extended with a fault
model, optionally extended with an FDIR model, a set of fault configurations
and a set of properties.

Inputs

M an operational model
FM a fault model
FDM an FDIR model (optional)
FC cardinality of a set of fault configurations
P a set of properties

Outputs FMEA Table Failure Modes and Effects Analysis Table
Using model checking techniques, the COMPASS toolset generates an FMEA
table starting from an operational model extended with a fault model, option-
ally extended with an FDIR model, cardinality of a set of fault configurations,
and a set of properties.

$> scripts/compute_fmea_table.py \

-i [--faults-cardinality=N] \

file1.slim ... fileN.slim

The properties in the properties file have to be purely propositional. Option –faults-cardinality
allows to specify the cardinality of fault configurations, which is by default 1. Running the
above script generates a file with extension .fmea. For example:

$> scripts/compute_fmea_table.py \

-i --property ’bit1_inverted’ \

-p documentation/examples/adder/adder_discrete/adder.propxml \

documentation/examples/adder/adder_discrete/adder.slim \

documentation/examples/adder/adder_discrete/adder_err.slim

generates FMEA Table file adder/adder.fmea.

November 8, 2018 COMPASS Toolset User Manual 121

A.1.7 Diagnosability Check

Check whether a model is diagnosable with respect to a diagnosability prop-
erty.

Inputs

IM an integrated model
Obs a set of observables
P one property
Ctx property context (optional)
Res path restrictions (optional)

Outputs
R A flag that indicates whether P is diagnosable (YES) or not (NO)

or (UNKNOWN) in case no counterexample has been found
using BMC in hybrid models.

TrA A trace exhibiting property P.
TrB A trace NOT exhibiting P, but whose observational

data is identical to TrA.
Using model checking techniques, the COMPASS toolset checks if an oper-
ational model, extended with a fault model, is diagnosable with respect to
a given diagnosability property. A property is said to be diagnosable if the
observational data is always sufficient for the controller to infer whether the
property is given at a specific moment in time, or not. This analysis can be
restricted to situations where the FSM has in past exhibited a given ordered
set of path restrictions, one at a time. The user may also specify a context
(always a propositional formula) in which the diagnosability property is to be
considered.

$> scripts/check_diagnosability.py \

-p <properties_file.propxml> \

[--property-num=N] \

[--path-restrictions <properties_file.propxml>] \

[--property-context <property_file.propxml>] \

[--bmc-length <bound>] \

[--diag-delay <delay>] \

file1.slim ... fileN.slim

A property is a propositional formula. So are the path restrictions, where one property
corresponds to one state restriction. For both files the format is the XML property file format.
As to the path restrictions, the order in which they are specified in the file is the chronological
order in which they are applied to the execution paths of the FSM. Option –property-num
allows to specify which properties exactly is to be considered as a fault. Option --diag-delay

and option --bmc-length specify that the property must be diagnosable within a SAT Bound
and a specific time bound (maximum diagnosability bound). Note that currently the set of
observables is taken directly from the input SLIM models, and this set has to be non-empty.
An example for a diagnosable property that holds:

$> scripts/check_diagnosability.py -i \

-p documentation/examples/battery_sensor/system_fdir.propxml \

--property B1_LOW \

November 8, 2018 COMPASS Toolset User Manual 122

documentation/examples/battery_sensor/system_fdir.slim

...

A diagnosability check has been performed for the property \

(sys.psu1.battery.low).

No counterexample for diagnosability of the given property \

was found within the given bound.

On the other side, a different property doesn’t hold:

$> scripts/check_diagnosability.py -i \

-p documentation/examples/battery_sensor/system_fdir.propxml \

--property S1_FAULT \

documentation/examples/battery_sensor/system_fdir.slim

...

A diagnosability check has been performed for the property \

(sys.sensor1.error=error:dead).

The property was found to be not diagnosable (see counterexample \

in system_fdir/system_fdir_trace1_A.xml and \

system_fdir/system_fdir_trace1_B.xml).

A.1.8 Fault Detection Analysis

Check whether a fault is detectable in a model

Inputs

M an operational model
FM a fault model
FDM an FDIR model (optional)
Alm a set of alarms
F a fault

Outputs O a set of candidate detection means (a set of alarms).
Using model checking techniques, the COMPASS toolset checks if a fault is
detectable in an operational model, extended with a fault model and optionally
extended with an FDIR model. A fault is considered detectable if there exists
an alarm in the input set of alarms, such that every occurrence of the fault
eventually causes the alarm to be true.

$> scripts/compute_fault_detection.py -i \

-p <properties_file.xml> \

[--property-num=N] \

[--bmc-length] \

[--detection-delay] \

file1.slim ... fileN.slim

Currently, the script allows any propositional formula to be considered as a fault. Thus a
fault can be specified in a properties file which is allowed to have only purely propositional
properties. Option –property-num allows to specify which properties exactly is to be con-
sidered as a fault. Option --detection-delay and option --bmc-length specify that the

November 8, 2018 COMPASS Toolset User Manual 123

property must be detectable within a SAT Bound and a specific time bound (maximum de-
tection bound). Note that currently the set of alarms is taken directly from the input SLIM
models, and this set has to be non-empty. The output set of alarms is generated into file with
extension .flt detect. If a fault is not detectable the returned set is empty. For example:

$> scripts/compute_fault_detection.py \

-i -p documentation/examples/adder/adder_discrete/adder.propxml \

--property-num 3 \

documentation/examples/adder/adder_discrete/adder.slim \

documentation/examples/adder/adder_discrete/adder_err.slim

generates file adder/adder.flt detect with the set of alarms.

A.1.9 Fault Isolation Analysis

Compute fault isolation measures for a model

Inputs

M an operational model
FM a fault model
FDM an FDIR model (optional)
Alm a set of alarms

Outputs set of FT a set of fault trees, one for each alarm.
Using model checking techniques, the COMPASS toolset computes fault iso-
lation measures for an operational model, extended with a fault model and an
optional FDIR model. Fault isolation measures are produced by computing
for each input alarm the set of minimal explanations (single faults or combi-
nations thereof) that are compatible with the alarm being true. The set of
minimal explanations is presented as a set of fault trees, one for each alarm.

$> scripts/compute_fault_isolation.py -i \

file1.slim ... fileN.slim

Note that the set of alarms is taken directly from the input SLIM models, and this set has to
be non-empty. The fault trees are generated as pairs of files: .N.flt events for events and
.N.flt gates for gates. Here N is an integer number ranging from 0 to the number of alarms.
For example:

$> scripts/compute_fault_isolation.py -i \

documentation/examples/adder/adder_discrete/adder.slim \

documentation/examples/adder/adder_discrete/adder_err.slim

generates files adder/adder.0.flt events, adder/adder.0.flt gates, adder/adder.1.flt events,
adder/adder.1.flt gates, adder/adder.2.flt events and adder/adder.2.flt gates, i.e.
three fault trees for alarms bit1 alarm1, adder alarm1 and bit2 alarm1, respectively. It is
possible to see this information by running the fault tree viewer, e.g.:

$> scripts/view_ft.py \

--events-file adder/adder.0.flt_events \

--gates-file adder/adder.0.flt_gates

November 8, 2018 COMPASS Toolset User Manual 124

A.1.10 Fault Recovery Analysis

Check the capability of a system to recover from a fault.

Inputs

M an operational model
FM a fault model
FDM an FDIR model (optional)
P a property

Outputs true|false true if recovery property holds, and false otherwise,
Tr counterexample trace if property does not hold.

Using model checking techniques, the COMPASS toolset checks if a system
is able to recover from a fault, given an operational model, extended with a
fault model and an optional FDIR model, and a property representing the
recoverability. A counterexample in XML format shall be generated if the
property does not hold.

$> scripts/compute_fault_recovery.py \

[--bmc [--bmc-length=<length>]] \

[-i] -p <properties_file.xml> \

file1.slim ... fileN.slim

This script is run exactly the same and with the same options as check_properties.py.
See Section A.1.2 for more details. An example of running the script is:

$> scripts/compute_fault_recovery.py -i \

-p documentation/examples/adder/adder_discrete/adder.propxml \

documentation/examples/adder/adder_discrete/adder.slim \

documentation/examples/adder/adder_discrete/adder_err.slim

A.1.11 Fault Coverage Analysis

Categorize faults depending on whether they can be detected/recovered from,
into different classes.

Inputs

M an operational model
FM a fault model
FDM an FDIR model (optional)
FP a property xml file
P a property
F a fault

Outputs true|false true if coverage property holds, and false otherwise.
Using model checking techniques, the COMPASS toolset checks if a system is
able to categorize faults depending on whether they can be detected/recovered
from, into different classes.

$> scripts/compute_fault_coverage.py [-i] \

[--bmc-length=<length>] \

[-p <properties_file.xml>] \

November 8, 2018 COMPASS Toolset User Manual 125

[--property-num=N] \

[--fault-str="fault_name"] \

[--detection-delay=<length>] \

file1.slim ... fileN.slim

The script performs the analysis on all the valid properties found in the specified prop-
erties file. Option –property-num allows to specify the exact propery to be used, whil
option –fault-str specifies the fault to be detected. Option --bmc-length and option
--detection-delay have the same behavior shown in Section A.1.8.

Results are printed out to stdout, and possibly generated traces are dumped into XML
files (one file each trace).

For example:

$> scripts/compute_fault_coverage.py -i \

-p documentation/examples/adder/adder_discrete/adder.propxml \

--property-num=3 \

--fault-str="bit1.error = error:inverted" \

--detection-delay=-1.0 \

--bmc-length=50 \

documentation/examples/adder/adder_discrete/adder.slim \

documentation/examples/adder/adder_discrete/adder_err.slim

...

Fault Coverage Analysis has been performed for fault

bit1.error = error:inverted and the result is: Covered

A.1.12 Zeno Detection

Check if a mode of the model is Zeno.

Inputs
M an operational model
FM a fault model (optional)
FDM an FDIR model (optional)

Outputs Ok|Unknown Ok if Zeno cycle is not detected, Unknown otherwise,
Tr counterexample trace if Zeno cycle is detected.

Using model checking techniques, the COMPASS toolset checks if a system is
able to detect from a mode, given an operational model, extended with a fault
model and an optional FDIR model, and optional bounds. A counterexample
in XML format shall be generated if the Zeno cycle is detected.

$> scripts/check_zeno_states.py [-i] \

[--bmc-length=<length>] \

[--klive-bound=<length>] \

file1.slim ... fileN.slim

Depending on the engine we want to use when performing zenoness checking (BMC or
kliveness) a different bound can be specified using, respectively, option --bmc-length and
option --klive-bound.

November 8, 2018 COMPASS Toolset User Manual 126

Results are printed out to stdout, and possibly generated traces are dumped into XML
files (one file each trace).

For example:

$> scripts/check_zeno_states.py /

--bmc-length=5 /

--klive-bound=10 /

documentation/examples/features/zeno/zeno_01.slim

...

Zenoness Checking: In "subsys1" checking of:

"(root.sc_subsys1.mode = mode_l2)" is UNREACHABLE

Zenoness Checking: In "(root)" checking of:

"(root.mode = mode_DefaultInitialMode)" is NON-ZENO

(trace in ’zeno_01/zeno_01_trace2.xml’)

In the example, the first Zeno cycle has been found to be UNREACHABLE. In contrast,
the second Zeno cycle has been found to be NON-ZENO and a corresponding counter-example
has been generated in zeno 01/zeno 01 trace2.xml.

To see the content of a trace, the trace viewer can be used:

$> scripts/view_trace.py <trace-file.xml>

A.1.13 Time Divergence Detection

Detect time divergent clocks in the model.

Inputs

M an operational model
FM a fault model (optional)
FDM an FDIR model (optional)
CLB a CLOCK Bound (optional)
FCLB a CLOCK Bound CVS file (optional)

Outputs Ok|Unknown Ok if time divergent path is not detected, Unknown otherwise,
Tr counterexample trace if time divergent path is detected.

Using model checking techniques, the COMPASS toolset checks if a system is
able to detect from a clock, given an operational model, extended with a fault
model and an optional FDIR model, and optional bounds. A counterexample
in XML format shall be generated if the time divergent path is detected.

$> scripts/check_time_divergence.py [-i] \

[--bmc-length=<length>] \

[--clock-bound=<length>] \

[--gen-clock-bound] \

[--clock-bound-file=<file.cvs>] \

file1.slim ... fileN.slim

November 8, 2018 COMPASS Toolset User Manual 127

Option --clock-bound is used to specify the clock max bound used when performing
clock divergence checking (it verifies whether the clock is bounded or not with respect to
this value); this value is ignored when reading from clock bound file, which is a CSV file
which can be specified using option --clock-bound-file or can be created through option
--gen-clock-bound. In this case, an entry is created for each clock data subcomponent,
associated to a default clock bound which is, if specified, the value of option --clock-bound.

Results are printed out to stdout, and possibly generated traces are dumped into XML
files (one file each trace).

For example:

$> scripts/check_time_divergence.py \

--clock-bound-file=documentation/examples/features/clock/unbound_input.cvs \

--bmc-length=20 \

documentation/examples/features/clock/clock.slim

Clock-Divergence Checking in "subsys1":

clock "x" set with bound "2" is UNBOUNDED (trace in

’clock_01/clock_01_trace1.xml’)

In the example, the clock has been found to be UNBOUNDED, and a corresponding
counter-example has been generated in clock 01/clock 01 trace1.xml.

Another example could be:

$> scripts/check_time_divergence.py \

--clock-bound-file=documentation/examples/features/clock/unbound_input.cvs \

--bmc-length=1 \

documentation/examples/features/clock/clock.slim

Clock-Divergence Checking in "subsys1":

clock "x" set with bound "2" is UNKNOWN

In the example, the clock has been found to be UNKNOWN and no counter-example has
been generated.

November 8, 2018 COMPASS Toolset User Manual 128

A.1.14 Performability Evaluation

For analysing the system on nominal performance (performance evaluation),
reliability, availability and maintainability (dependability) and performance
under degraded conditions (performability), the toolset shall verify whether
an operational model extended with a fault model, optionally extended with
an FDIR model, satisfies a probabilistic property.

Inputs

M an operational model
FM a fault model (optional)
FDM an FDIR model (optional)
P a set of probabilistic properties

Outputs [0,1] probability for each probabilistic property φ ∈ P
Using numerical probabilistic model checking techniques, the toolset shall ver-
ify whether an operational model extended with a fault model, optionally
extended with a FDIR model, satisfies the given probabilistic property.

$> scripts/evaluate_performability.py -i \

file1.slim ... fileN.slim

$

An example of the running script is:

$> scripts/evaluate_performability.py -i \

documentation/examples/sensorfilter/sensorfilter.slim \

documentation/examples/sensorfilter/sensorfilterErr.slim \

-p documentation/examples/sensorfilter/sensorfilter.propxml \

--property="sensor1 dead in [1,50]"

--error-bound=1e4

Error bound possibly too high

The root component contains ports, performability assumes a closed world.

Performability Evaluation of ’Globally, it is always the case that

{sensors.sensor2.error = error:OK} holds between 0 and 1 with

probability > 0’ returns

prob = 0.0062508029

$

The performability analysis is performed for each probabilistic property expressed in the
model and in the order they are expressed. For each probabilistic property, the corresponding
probability range is outputted.

November 8, 2018 COMPASS Toolset User Manual 129

A.1.15 Fault Tolerance Evaluation

Compute fault tolerance measures given a set of properties and a corresponding
set of fault trees.

Inputs
P a set of properties
FTs a set of fault trees

Outputs FTM the fault tolerance measure. property φ ∈ P
Given a component, a set of properties, and a set of corresponding fault trees
generated for the component, the COMPASS toolset shall compute fault tol-
erance measures. Fault tolerance measures shall reect the capability of the
component to sustain single or multiple faults and shall be computed as fol-
lows: for each cardinality, a table shall report the number of unique minimal
cut sets with that cardinality.

$> scripts/evaluate_fault_tolerance.py \

--fts-files <fault_tree_file_1.xml> \

--fts-files <fault_tree_file_2.xml> \

...

file1.slim ... fileN.slim

$

An example of the running script is:

$> scripts/evaluate_fault_tolerance.py \

--fts-file documentation/examples/adder/Adder_flt_ftoe_1.xml \

--fts-file documentation/examples/adder/Adder_flt_ftoe_2.xml \

documentation/examples/adder/adder_discrete/adder.slim \

documentation/examples/adder/adder_discrete/adder_err.slim

Fault Tree Evaluation results are stored in "adder/adder.ftoe".

$

The analysis counts the number of unique cut sets computed for all the given fault trees
(specified using the option fts-file), divided on the basis of their cardinality.

November 8, 2018 COMPASS Toolset User Manual 130

A.1.16 Dynamic Fault Tree (and Criticality) Evaluation

Compute the probabilities of the events in a fault tree and the criticality num-
ber.

Inputs
FT a dynamic fault tree
TB upper time bound

Outputs FTO a fault tree with probabilities attached to events.
By translating the fault tree to its corresponding Markov Chain, the toolset
shall use probabilistic model checking techniques to compute the probabilities
of occurrence of the top level event and the intermediate events in the fault
tree within the given time bounds. The output fault tree shall be generated in
XML or other suitable format1. Additionally, the toolset shall compute the
criticality number associated with the top level event, as the product between
a user-defined severity number of the property violation (associated with the
top level event) and the probability of the top level event..

$> scripts/evaluate_dynamic_fault_tree.py \

<fault_tree_xml> \

<rates_map_file> \

<upper_bound> \

<output_fault_tree_events_filename> \

<output_fault_tree_gates_filename> \

--severity=<severity> \

This script requires to specify a fault tree in xml format, a rates-map file (note that it is
generated during fault tree generation) an upper bound for the mission time and the name of
the events and gates files of the resulting annotated fault tree.

Both the fault tree (in XML) as well as the rates map (mapping error rates to basic events)
can be obtained by running the compute fault tree.py script. The mission time defines the
time bound for which the failure probability of the fault tree is calculated.

The following is an example of running this cli-script:

$> scripts/evaluate_dynamic_fault_tree.py \

documentation/examples/sensorfilter/sensorfilter_ft.xml \

documentation/examples/sensorfilter/sensorfilter_ft_rates.rates_map \

100 \

annotated-ft.events \

annotated-ft.gates \

--severity=5

The fault tree has been evaluated. The annotated fault tree can be found

in the files sensorfilter_ft/annotated-ft.events and

sensorfilter_ft/annotated-ft.gates.

$

The resulting fault tree can be viewed with the following command:

$> scripts/view_ft.py \

--events-file sensorfilter_ft/annotated-ft.events \

--gates-file sensorfilter_ft/annotated-ft.gates

November 8, 2018 COMPASS Toolset User Manual 131

A.1.17 Dynamic Fault Tree Verification

Verify whether a probabilistic property holds for a dynamic fault tree.

Inputs
FT a dynamic fault tree
P a probabilistic property

Outputs Prob The probability for each probabilistic property.
By translating the dynamic fault tree to its corresponding Markov Chain, the
toolset shall use probabilistic model checking techniques to verify whether the
probabilistic property holds for the dynamic fault tree.

$> scripts/verify_dynamic_fault_tree.py \

<fault_tree_xml> \

<rates_map_file> \

-p <property_file>

Note that the rates-map file is generated during fault tree generation. The property file can
state multiple probabilistic properties. The cli-script then computes the probability for each
of them.

The following is an example of running this cli-script:

$> scripts/verify_dynamic_fault_tree.py \

documentation/examples/sensorfilter/sensorfilter_ft.xml \

documentation/examples/sensorfilter/sensorfilter_ft_rates.rates_map \

-p documentation/examples/sensorfilter/sensorfilter_ft_properties.xml

Fault tree verification for ’Globally, {Top_Level_Event} holds

eventually between 10 and 50 with probability > 0’ returns

prob = 0.784841

Fault tree verification for ’Globally, {Top_Level_Event and not E6}

holds eventually between 0 and 50 with probability > 0’ returns

prob = 0.0

Fault tree verification for ’Globally, {E2} holds without interruption

until {fault_cfg_4} holds between 20 and 100 with probability > 0’

returns

prob = 0.0

Fault tree verification for ’Globally, it is always the case that

{fault_cfg_2} holds between 0 and 100 with probability > 0’ returns

prob = 0.0

Fault tree verification for ’Globally, if {fault_cfg_3} holds then it

must be the case that {fault_cfg_4} has occurred before between 0 and

100 with probability > 0’ returns

prob = 1.0

Fault tree verification for ’Globally, if {E5} has occurred then in

response {Top_Level_Event} eventually holds between 0 and 10 with

probability > 0’ returns

prob = 2.30000000001e-06

$

November 8, 2018 COMPASS Toolset User Manual 132

A.1.18 Monte Carlo Simulation

Analyze the probability of a probabilistic property by means of Monte-Carlo
simulation

Inputs

M an operational model
FM a fault model (optional)
FDM an FDIR model (optional)
P a set of probabilistic properties

Outputs [0,1] probability for each supported probabilistic property φ ∈ P
Using statistical analysis techniques (Monte-Carlo simulation), the toolset de-
termines the probability that the specified property holds, givens the extended
input specification. The confidence and error bound parameters control the
accuracy and precision of the simulation.

$> scripts/simulate_with_monte_carlo.py [-i]\

-p <properties_file.xml>

[--confidence <confidence>]\

[--error-bound <error bound>]

file1.slim ... fileN.slim \

$

The properties file contains the properties for which the probability will be determined by
simulation. The confidence and error bound parameters are optional. The confidence must be
specified as a value between 0.0 and 1.0. The error bound is any (small) positive value.

An example of the running script is:

$> scripts/simulate_with_monte_carlo.py -i \

-p documentation/examples/gps/gps_prop_prob.propxml \

documentation/examples/gps/gps.slim

Monte Carlo Simulation of ’Globally, {signal = 0} holds eventually between

0 and 5 with probability > 0’ returns

(0.0, 0.05)

The Monte-Carlo simulation is performed for each supported probabilistic property expressed
in gps_prop_prob.xml and in the order they are expressed. For each probabilistic property,
the corresponding probability range is outputted.

November 8, 2018 COMPASS Toolset User Manual 133

A.1.19 Validation of Formal Properties

Check different types of properties given by command line. In more details,
check consistency of a set of properties; check wheather a set of properties
is consistent with an scenario, specified with a new formal property. Finally,
check if a set of properties entail an assertion, specified with a new formal
property.

Inputs

M SLIM model
type of check consistency, possibility, or assertion
component component name or ’ALL’ to consider ALL components
r a subset of properties (contracts ids) separated by comma,

or ALL to consider ALL contracts and subcomponents contracts.
p assertion/possibility (optional)
u compute unsat cores (optional)
w consider the whole architecture for the check (optional)

Outputs
OK A trace is shown as witness for consistent and possibility check,

or unsat cores for an assertion check if ’u’ option is given
NOT OK A trace is given as counterexample for an assertion check,

or unsat cores are given for consistency and possibility
if ’u’ option is given.

The input slim model is translated to an ocra specification and then OCRA
tool is used as backend to check the validity of the given property.

$> scripts/check_validation_properties.py \

[[--consistency] | [--possibility] | [--assertion]] \

[--component=<component_name>] \

[--r=<subset_prop>] \

[--p=<ocra_prop] \

[--u] \

file.slim

The type of validation check is chosen with option --consistency, option --possibility

or option --assertion. Option --component specifies the component, while option --r is
used to define the subset of properties we are considering (ALL to include all contracts and
subcomponent contract). Option --p can be used only with option --possibility and
option --assertion and it represent the contract id on which we want to run the check.
Option --u computes the unsat cores.

The following is an example of running the cli-script:

$> scripts/check_validation_properties.py \

--assertion \

--component="Sys" \

--r="Sys.termination.ASSUMPTION,E.cmd_fw.GUARANTEE" \

--p="Sys.termination.GUARANTEE" \

--u \

documentation/examples/starlight/starlight.slim

November 8, 2018 COMPASS Toolset User Manual 134

...

Entailment Input_validation_prop: UNKNOWN

...

Formulas ids are used to make reference to assumption, guarantee, and norm guarantee
(i.e., A → G, where A is the assumption and G is the guarantee of a given contract) of the
contracts of components. A formula id (e.g., Sys.termination.GUARANTEE) is made up of a
component name, a contract name and one of the keyword: ASSUMPTION, GUARANTEE,
or NORM GUARANTEE.

A.1.20 Tighten a Contract Refinement

Tighten a given contract refinement by weaking the assumption of the par-
ent contract and the guarantee of its subcontracts (top-down approach) or
strengthening the guarantee of the parent contract and the assumption of its
subcontracts (bottom-up approach).

Inputs

M SLIM model
tightening approach top-down or bottom-up
contract contract name
component component name which is defined the given contract
s consider other contracts refinement which have subcontracs

in common (optional)
Outputs List List of tighten contracts
The input slim model is translated to an ocra specification and then OCRA
tool is used as backend to tighten the given contract refinement.

$> scripts/tighten_contract_refinement.py \

[[--top_down] | [--bottom-up]] \

[--component=<component_name>] \

[--contract=<contract>] \

[--s] \

file.slim

This script requires a component and a contract specified through option --component

and option --contract. The type of tightening can be chose using option --top-down or
option bottom-up. Option --s allows to take into account those contracts refinements at
same level which have subcontracts in common.

The following is an example of running the cli-script:

$> scripts/tighten_contract_refinement.py \

--top_down \

--component="Sys" \

--contract="termination" \

documentation/examples/starlight/starlight.slim

...

-Tighten Result N ’1’ for Weakening Assumption of Parent Contract ’termination’

TRUE

...

November 8, 2018 COMPASS Toolset User Manual 135

A.1.21 Check Contracts Composite Implementation

Check compositionally if a component implementation satisfies a contract (or
all contracts).

Inputs
M SLIM model
contract contract name

Outputs Val The result of the composite verification; it can be OK, BOUND OK or NOT OK

The input slim model is translated to an ocra specification and then OCRA tool
is used as backend to check compositionally the contract(s). The verification is
compositional in the sense that if the component implementation is composite,
the correctness of the component is verified by checking the correctness of the
contract refinement and the correctness of the atomic components with regards
to their contracts.

$> scripts/check_contracts_composite_implementation.py \

[[--bmc] | [--klive] | [--kzeno] \

[--fairness] \

[--contract <contract>] \

[--bound <ocra_check_bound>] \

file.slim

This script requires to specify the contract for which the composite verification will be
run through option --contract. The engine to be used can be chosen using option --bmc,
option --klive or option --kzeno. Option --fairness enables the addition of fairness
assumption.

The following is an example of running the cli-script:

$> scripts/check_contracts_composite_implementation.py \

--kzeno --fairness --bound=5 \

--contract=termination \

documentation/examples/starlight/starlight.slim

...

Checking refinement of component: Sys

Checking "CONTRACT termination REFINEDBY sc_E.cmd_fw, sc_Low.rx, sc_Low.causality,

sc_High.rx, sc_High.causality, sc_E.res_fw;"

Checking the correct implementation of "termination" ... [OK]

Checking the correct environment of "sc_E.cmd_fw" .. [OK]

Checking the correct environment of "sc_Low.rx" .. [OK]

Checking the correct environment of "sc_Low.causality" .. [OK]

Checking the correct environment of "sc_High.rx" .. [OK]

Checking the correct environment of "sc_High.causality" .. [OK]

Checking the correct environment of "sc_E.res_fw" .. [OK]

...

November 8, 2018 COMPASS Toolset User Manual 136

A.1.22 Check Contracts Monolithic Implementation

Check monolithically if a component implementation satisfies a contract (or
all contracts).

Inputs
M SLIM model
contract contract name

Outputs Val The result of the monolithic verification; it can be OK, BOUND OK or NOT OK

The input slim model is translated to an ocra specification and then OCRA tool
is used as backend to check compositionally the contract(s). The verification
is monolithic in the sense that OCRA generates an SMV file representing the
behavior of the whole component and verifies it with one check.

$> scripts/check_contracts_monolithic_implementation.py \

[[--bmc] | [--klive] | [--kzeno] \

[--fairness] \

[--contract <contract>] \

[--bound <ocra_check_bound>] \

file.slim

This script requires to specify the contract for which the monolithic verification will be
run through option --contract. The engine to be used can be chosen using option --bmc,
option --klive or option --kzeno. Option --fairness enables the addition of fairness
assumption.

The following is an example of running the cli-script:

$> scripts/check_contracts_monolithic_implementation.py \

--kzeno --fairness --bound=5 \

--contract=termination \

documentation/examples/starlight/starlight.slim

...

Checking implementation of contract Sys.termination ... [OK]

...

A.1.23 Check Contracts Refinements

Check if the refinement of a contract (or all contracts) is correct

Inputs
M SLIM model
contract contract name

Outputs Msg A message saying whether all contracts refinements are ok are not
The input slim model is translated to an ocra specification and then OCRA
tool is used as backend to check the contract(s) refinement.

$> scripts/check_contracts_refinement.py \

[[--bmc] | [--klive] | [--kzeno] \

[--fairness] \

[--contract <contract>] \

November 8, 2018 COMPASS Toolset User Manual 137

[--bound <ocra_check_bound>] \

file.slim

This script requires to specify the contract for which the refinement check will be run
through option --contract. The engine to be used can be chosen using option --bmc,
option --klive or option --kzeno. Option --fairness enables the addition of fairness
assumption.

The following is an example of running the cli-script:

$> scripts/check_contracts_refinement.py \

--klive --fairness --bound=5 \

--contract=termination \

documentation/examples/starlight/starlight.slim

...

Summary: everything is OK

...

A.1.24 Generate Hierarchical Fault Tree

Generate a hierarchical fault tree from the contract specification

Inputs
M SLIM model
contract contract name

Outputs Msg A message saying whether all contracts refinements are ok are not
The input slim model is translated to an ocra specification and then OCRA
tool is used as backend to generate the fault tree.

$> scripts/compute_fault_tree_from_contracts.py \

[[--bmc] | [--klive] \

[--fairness] \

[--contract <contract>] \

[--bound <ocra_check_bound>] \

[--view] \

file.slim

This script requires to specify the contract for which we want to run hierarchcal fault tree
generation through option --contract. The engine to be used can be chosen using option
--bmc or option --klive. Option --fairness enables the addition of fairness assumption.
With option --view it is possible to visualize the fault tree once it has been generated.

The following is an example of running the cli-script:

$> scripts/compute_fault_tree_from_contracts.py \

--klive --fairness --bound=5 \

--contract=termination \

documentation/examples/starlight/starlight.slim

...

FT+ generated: Sys.termination-FAILURE_O

...

November 8, 2018 COMPASS Toolset User Manual 138

The generated fault tree can now be visualized using the following command:

$> scripts/view_ft.py \

--events-file starlight/Sys.termination-FAILURE_O-events.txt \

--gates-file starlight/Sys.termination-FAILURE_O-gates.txt

We can both generate the fault tree and visualize it using only one command as follows:

$> scripts/compute_fault_tree_from_contracts.py \

--klive --fairness --bound=5 --contract=termination --view \

documentation/examples/starlight/starlight.slim

A.1.25 TFPG Syntax Check

Check if a TFPG is syntactally correct

Inputs T TFPG model
Outputs m A message saying whether all checks passed or not
Several syntactic checks are run on a particular TFPG.

The following is an example of running the cli-script:

$> scripts/check_syntax_tfpg.py \

--tfpg-file documentation/examples/battery_sensor/system.txml

Validating TFPG file ’documentation/examples/battery_sensor/system.txml’...

All checks passed.

A.1.26 TFPG Behavioral Validation

Run TFPG behavioral validation.

Inputs

M an operational model
A a SLIM Association xml file
FM a fault model
FDM an FDIR model (optional)
TFPG a TFPG xml file

Outputs Ok|Unknown Ok if is behaviourally correct, Unknown otherwise,
TrA counterexample TFPG trace if it is not complete.
TrB counterexample SYSTEM trace if it is not complete.

It is used to automatically validate the behavioral of a TFPG, starting from
a system model and a definition of the SLIM associations elements: a set
of failure modes, a set of monitored discrepancies, a set of non-monitored
discrepancies, and a set of system modes.

$> scripts/validate_tfpg_behavior.py \

[-i] \

[--bmc-length=<length>] \

[--tfpg-file <file_tfpg.txml>] \

[--associations-file <file_associations.axml>] \

file1.slim ... fileN.slim

November 8, 2018 COMPASS Toolset User Manual 139

Results are printed out to stdout, and possibly generated traces are dumped into XML
files (one file each trace).

For example:

$> scripts/validate_tfpg_behavior.py \

-i \

--tfpg-file documentation/examples/battery_sensor/system.txml \

--associations-file documentation/examples/battery_sensor/system.axml \

--bmc-length 10

documentation/examples/battery_sensor/system.slim \

...

Result: The TFPG is complete with respect to the model

(within analysis bound).

In the example, all checks passed and the result is bounded completeness. So no traces are
generated.

Another example could be:

$> scripts/validate_tfpg_behavior.py \

-i \

--tfpg-file documentation/examples/battery_sensor/system_incomplete.txml \

--associations-file documentation/examples/battery_sensor/system.axml \

--bmc-length 10

documentation/examples/battery_sensor/system.slim

...

Result: The TFPG is incomplete with respect to the model.

A pair of traces have been generated.

In the example, all checks passed and the result is incomplete, traces have been generated in
system/system trace1-TFPG.xml and system/system trace1-SYS.xml.

A.1.27 TFPG Synthesis

Run TFPG synthesis.

Inputs

M an operational model
A a SLIM Association xml file
FM a fault model
FDM an FDIR model (optional)

Outputs Ok|Unknown Ok if the checks passed, Unknown otherwise,
TFPG the synthesized TFPG xml file generated.

It is used to automatically synthesize a TFPG graph, starting from a system
model and a definition of the SLIM associations elements: a set of failure
modes, a set of monitored discrepancies, a set of non-monitored discrepancies,
and a set of system modes.

November 8, 2018 COMPASS Toolset User Manual 140

$> scripts/tfpg_synthesis__srs_097.py \

[-i] \

[--bmc-length=<length>] \

[--associations-file <file_associations.axml>] \

file1.slim ... fileN.slim

Results are printed out to stdout, and possibly generated traces are dumped into XML
files (one file each trace).

For example:

$> scripts/synthesize_tfpg.py \

-i \

--bmc-length=20 \

--associations-file=documentation/examples/battery_sensor/system.axml \

documentation/examples/battery_sensor/system.slim

...

Result: ok

tfpg file: <path_to_top_dir>/system_synth_tfpg.txml

In the example, all checks passed and a TFPG is synthesized and has been generated
in system synth tfpg.txml. The created tfpg can be visualized using the corresponding
cli-script:

$> scripts/view_tfpg.py \

--tfpg-file system_synth_tfpg.txml

A.1.28 TFPG Effectiveness Validation

Run TFPG effectiveness validation.

Inputs
TFPG a TFPG xml file
FM a set of Failure Modes
SM the System Mode (optional)

Outputs Ok|Unknown Ok if the TFPG is effective, Unknown otherwise,
TrA counterexample trace if a FM of SM is not diagnosable.
TrB counterexample trace if a FM of SM is not diagnosable.

It is used to know if the TFPG is effective for diagnosis, starting from the
TFPG and a set of target modes: failure modes.

$> scripts/validate_tfpg_effectiveness.py \

[--tfpg-file <file_tfpg.txml>] \

[--use-bmc=<boolean>]

[--bmc-length=<length>] \

[--target-fm-set=<FM1,...,FMn>] \

[--sampling-rate=<N>] \

[--target-system-mode=SM1,...,SMn>]

November 8, 2018 COMPASS Toolset User Manual 141

Option target-fm-set specifies the set of FMs that need to be diagnosed (as a group),
option sampling-rate represents the interval at which the monitored system is sampled and
option target-system-mode specifies the system mode for which effectiveness should be
analyzed.

Results are printed out to stdout, and possibly generated traces are dumped into XML
files (one file each trace).

For example:

$> scripts/validate_tfpg_effectiveness.py \

--tfpg-file documentation/examples/battery_sensor/system.txml \

--target-fm-set=Gen1_off \

--sampling-rate=1.0 \

--target-system-mode=Primary \

--use-bmc \

--bmc-length=10

...

No counterexample has been found within bound 10.

In the example, all checks passed and no counterexample has been found within bound 10.
Another example could be:

$> scripts/validate_tfpg_effectiveness.py \

--tfpg-file documentation/examples/battery_sensor/system.txml \

--target-fm-set=Gen1_off \

--sampling-rate=1.0 \

--target-system-mode=Secondary2 \

--use-bmc \

--bmc-length=10

...

The TFPG is not effective for diagnosis under the given constraints

(see counterexample in documentation/examples/battery_sensor/system_trace1-A.xml and

documentation/examples/battery_sensor/system_trace1-B.xml).

In the example, all checks passed and the result is that the TFPG is not effective under the
given constraints. So traces have been generated in battery sensor/system trace1-A.xml

and battery sensor/system trace1-B.xml.

A.1.29 Advanced Script Options

This section describes the script options which are not required by default. The description
of all of them can be obtained by running any script with the option --help option, e.g.:

November 8, 2018 COMPASS Toolset User Manual 142

$> scripts/check_syntax.py --help

In general, options have two forms: the short one consisting of option - and one charac-
ter, and the long one consisting of option -- and a hyphen-separated words. Options may
have either of the form or both. For example, option -h and option --help are completely
equivalent.

Here is the description of the most common options:

• option --version – outputs the version of the script

• option -h, option --help – outputs the help message

• option -f, option --file – specifies base-name for all generated files. By default the
base-name is the name of the first input SLIM file without extension.

• option -d, option --dir – allows to specify the directory where the files are to be
generated. This path is merged with base-name to obtain the full path.

• option -r, option --root – specifies the name of the root component implementation.
This options is required if several component implementations can be root and the script
cannot detect which one to use.

• option -l, option --level – sets the output system logging level. Note that this option
is mainly designed for debugging the toolset.

• option -e, option --logfile – sets the name of the log file where to dump all the
output messages.

• option --quiet – only error message are output to the console. Nominal messages are
not output.

• option --stop-after – allows to stop the script after a particular phase.

• option -i, option --injection – specifies that fault injections are to be applied.

• option --output-fault-extended – makes the script to output .err slim file with
input model after fault extension is done. This is purely a debugging option.

• option --property – Specify the name of the property to analyze. This option can be
given multiple times.

• option --property-instance – Specify the path of the instance of which to check its
specified properties.

• option -p, option --property-file – specifies a properties file. Use the option if the
properties are specified in a separate file, as opposed to specified directly in the model.

• option --smv int to word – by default all the data of type int are treated as un-
bounded integers. This may easily cause a state space explosion and is not supported
by all types of analysis. Using this option will encode integers as bounded words.

November 8, 2018 COMPASS Toolset User Manual 143

• option -w, option --wordsize – specifies the number of bits to encode integers with.
For example option -w 3 makes integers be encoded as 3 bits, which is enough to deal
with number from 0 to 7.

Arguments of some options, such as option --level, range over particular sets of strings.
To see which string exactly are allowed a user can run a script with this options and some
invalid argument and the script will output the allowed set in the error message.

In case of TFPG analyses, the following options are common:

• option --tfpg-file – specifies the name of the file containing the representation of the
tfpg (which can be in xml format or in a more readable format).

• option --associations-file –specifies the name of the file containing the tfpg slim
associations, wich is a file containing a list of slim expressions, each one linked to an
element of the tfpg.

	Introduction
	Terminology
	Installation
	Prerequisites
	COMPASS Toolset Packages
	Obtaining a Copy of the Toolset
	Installation of the COMPASS Toolset
	Running the Toolset

	Examples
	Summary of Examples
	Description of Examples
	adder
	battery_sensor
	blocks_world
	cruise
	CSSP_EagleEye
	engine
	features
	gps
	new_semantics
	power
	sensorfilter
	smartgrid
	starlight
	time_until
	VBE_Proc

	The SLIM Language in a Nutshell
	Nominal Behavior
	Notes on Developing Timed Specifications

	Error Behavior
	Fault Injection

	Handling Models
	Loading Models
	Saving Models
	Defining Fault Injections

	Properties
	Atomic Propositions
	CSSP
	Property Patterns
	Pattern classes

	Generic Properties
	Propositional Properties

	GUI-Based Property Management

	Mission Specification
	Loading and Saving the Mission Specification
	Phases and Op-modes names
	S/C Configurations associated to Op-modes
	Phase/Op-mode Combination via Observable

	Analyses
	Support of Aspects w.r.t. Analyses
	Validation
	Contract Validation
	Contract Refinement
	Contract Tightening

	TFPG
	Introduction to TFPGs
	Behavioral Validation
	Synthesis
	Effectiveness Validation

	Verifying Functional Correctness
	Trace Inspection
	Model Simulation
	Deadlock Checking
	Model Checking
	Zeno Analysis
	Time Divergence Analysis
	Contract-based Verification

	Performability Analysis
	Relation to Fault Tree Generation
	Choice of Duration Parameter
	Choice of Error bound Parameter for IMCA
	Numerical Stability for MRMC
	Simulation

	Safety and Dependability Analysis
	Fault Tree Generation
	Dynamic Fault Tree Generation
	Probabilistic Fault Tree Generation
	Failure Modes and Effect Analysis
	Fault Tolerance Evaluation
	(Dynamic) Fault Tree Evaluation
	Criticality Evaluation
	(Dynamic) Fault Tree Verification
	Hierarchical Fault Tree Generation

	FDIR: Fault Detection, Isolation and Recovery
	Fault Detection Analysis
	Fault Isolation Analysis
	Fault Recovery Analysis
	Diagnosability Analysis
	Fault Coverage Analysis

	Support
	CLI scripts
	Scripts
	Syntax Check
	Model Checking
	Model Simulation
	Deadlock Checking
	Fault Tree Generation
	Failure Modes and Effects Analysis
	Diagnosability Check
	Fault Detection Analysis
	Fault Isolation Analysis
	Fault Recovery Analysis
	Fault Coverage Analysis
	Zeno Detection
	Time Divergence Detection
	Performability Evaluation
	Fault Tolerance Evaluation
	Dynamic Fault Tree (and Criticality) Evaluation
	Dynamic Fault Tree Verification
	Monte Carlo Simulation
	Validation of Formal Properties
	Tighten a Contract Refinement
	Check Contracts Composite Implementation
	Check Contracts Monolithic Implementation
	Check Contracts Refinements
	Generate Hierarchical Fault Tree
	TFPG Syntax Check
	TFPG Behavioral Validation
	TFPG Synthesis
	TFPG Effectiveness Validation
	Advanced Script Options

