
RAT
Requirements Analysis Tool

Version 1.2

Authors
Roderick Bloem, Roberto Cavada,

Alessandro Cimatti, Ingo Pill,
Marco Roveri, Simone Semprini and

Andrei Tchaltsev

c©2005-2006 by FBK and Technical University of Graz

Notices

For information, contactRAT (rat@fbk.eu).

This tool has been partially developed within the PROSYD European project, contract number
507219. (http://www.prosyd.org)

The information in this document is provided ”as is”, and no guarantee or warranty is given
that the information is fit for any particular purpose. The user thereof uses the information at
its sole risk and liability.

c© Copyright 2005-2006 FBK and Technical University of Graz. All rights reserved.

ii • RAT – Requirements Analysis Tool

Contents
Contents ... iii

Table of Figures .. iv

List of Tables ..v

1 RAT Users Manual... 1

1.1 Running RAT ... 1

1.2 Property Assurance in RAT.. 3

The Main Window ... 3

Traces and their management... 6

An Example .. 8

1.3 Property Simulation in RAT ... 13

The Main Window ... 13

The Analysis Window... 15

An example ... 16

1.4 Property Realizability in RAT .. 19

Realizability Problem ... 20

Specifying a Realizability Problem... 21

The Main Window ... 22

2 RAT Architecture... 25

2.1 Architecture and Implementation Notes 25

2.2 Architectural Patterns .. 26

The Model-View-Controller pattern.. 27

The Observer pattern .. 27

2.3 Software Structure... 28

Tools Stubs.. 29

A vertical view over the Software Structure................................... 30

3 References... 33

RAT – Requirements Analysis Tool Contents • iii

Table of Figures

Figure 1 - RAT- Main window. ... 2

Figure 2 - RAT- New project wizard. ... 2

Figure 3 - RAT- New project wizard, project data. 3

Figure 4 - Property Assurance main window. 4

Figure 5 - Creating signals, requirements. .. 5

Figure 6 - Creating possibilities and assertions. 6

Figure 7 - Verification panels.. 6

Figure 8 - An example of trace visualization. 7

Figure 9 - An example of trace visualization. 8

Figure 10 - Editing a category... 9

Figure 11 - Editing a trace.. 9

Figure 12 - Counter - initial specification. .. 10

Figure 13 - Counter - checking an assertion.. 11

Figure 14 - Counter - fixing the specification. 12

Figure 15 - Counter - checking a possibility. 12

Figure 16 - Counter - traces of the session.. 13

Figure 17 - Property Simulation Main Window................................... 14

Figure 18 - Property Simulation Evaluation Analysis Window. 16

Figure 19 - Create a project for Property Simulation. 17

Figure 20 - Property Simulation Start Window.................................... 17

Figure 21 - Witness for propertyG(r 7→ F(a)). 18

Figure 22 - Analysis of trace for propertyG(r 7→ F(a)). 18

Figure 23 - Ask for a request on signal r. ... 19

Figure 24 - Witness with request for propertyG(r 7→ F(a)). 19

Figure 25 - Witness for propertyG(r 7→ F(a))&& F(r). 20

Figure 26 - Witness for property(G(r 7→ F(a)))&& (F(r)). 20

Figure 27 - Shaping the trace.. 21

Figure 28 - Witness for shaped trace request....................................... 21

Figure 29 - Creating signals, requirements. .. 22

Figure 30 - Specification of an environment signal in RAT. 22

Figure 31 - Specification of a system guarantee property in RAT.......... 22

Figure 32 - The Realizability window in RAT. 23

Figure 33 - The Realizability window in RAT. 24

Figure 34 - RAT- Software parts and collocation 26

Figure 35 - RAT- Software Structure ... 28

Figure 36 - RAT- Hierarchy of main software entities 30

iv • Table of Figures RAT – Requirements Analysis Tool

List of Tables

RAT – Requirements Analysis Tool List of Tables • v

vi • List of Tables RAT – Requirements Analysis Tool

1 RAT Users Manual
The tool RAT fulfill the need for a proper technological support to formal methods
in the setting of requirements analysis by providing its users with the integration of
three sets of functionalities that enact the Property Simulation, Property Assurance
and Property Realizability methodologies. In this sectionwe show how to interact
with RAT in order to accomplish the tasks related to these three methodologies.

All the examples in the following sections are written in theVerilog flavor of PSL
as from [8], the language supported by the verification engines VIS and NUSMV.

1.1 Running RAT
RAT can be execute from the command line by the following command

rat - Launches the python interpreter to executeRAT
program

Command

rat [-h|--help] [-v|--version]

[-f <FILE.rat> | --project = <FILE.rat>]

Command Options:

-h Prints the command usage.
-v Prints the program version.
-f <FILE.rat> Loads the given project file

Figure 1 shows the start-up screen-shot of RAT when the tool is launched without
any project as argument.

The unit of interaction with RAT is theproject, i.e. a collection of formal pro-
perties and results of verification checks. The relevance ofthe role of a project,
as an object with a state that can be saved and reloaded is clear as far as Prop-
erty Assurance and Property Realizability are regarded: the user that builds formal
specifications and inspect their quality, must have the possibility to work in dif-
ferent sessions and of saving the results of the work performed from session to
session. With Property Simulation, such a feature could seem less relevant, but the
value of having the possibility of saving simulation sessions (i.e. the properties
simulated and the connected traces) shows clearly if we think of long time con-
suming work sessions and of the importance of having a quick reference to their
results.

RAT – Requirements Analysis Tool RAT Users Manual • 1

Figure 1: RAT- Main window.

Through the menuFile or the commandNew in the tool bar it is possible to access
the wizard for the creation of new projects, shown in Figure 2, select the kind of
project, and specify the details of the project entering thedata in the fields shown
in Figure 3.

Figure 2: RAT- New project wizard.

As a result of the integration Property Simulation, Assurance and Realizability
into RAT (rather than simply juxtaposing them), it is possible to shift between
these three kinds of projects at any time, and to load properties, for example, from
Property Assurance into Property Simulation or Property Realizability. A project
hence sums up all the history of a design development process, from the initial ex-
plorations of properties prototypes, to the definition of a set of requirements, from
the inspection of requirements adherence to the intended meaning, to the possi-
ble use of simulation to perform a fine grained inspection of properties coming
from Property Assurance, and to checking the interplay between controlled and
uncontrolled signals and their requirements with Realizability.

Once a project has been created, the user can proceed as described in Sections 1.2,
1.3 and 1.4.

2 • RAT Users Manual RAT – Requirements Analysis Tool

Figure 3: RAT- New project wizard, project data.

1.2 Property Assurance in RAT
RAT enacts the Property Assurance Methodology (see [2] Section 2.2) by support-
ing the users in Property Assurance related tasks; RAT provides a proper frame-
work for managing set of properties, a user-friendly interface towards verification
engines, and a proper framework for managing the results of Property Assurance
proof obligations. In this section we describe how to interact with the tool by
following a typical use case, which encompasses the following steps:

• editing of a project;

– editing of signals

– editing of requirements

– editing of possibilities

– editing of assertions

• verification

– activation of the checks

– management of traces

In the setting of Property Assurance,Projectsare the entities that correspond to
the ensemble of a specification together with the results obtained by the connected
proof obligations. The building blocks of a specification inthe Property Assurance
Methodology arerequirements, possibilitiesandassertion, all of which are proper-
ties formally expressed on a set of atomic symbols calledsignals. Following the
methodology, given a specification, some proof obligation need to be discharged;
in [2] Section 2.2 it has been shown how these proof obligations can be mapped
onto SAT technology: the tool provides an interface towardsthis technology and
communicates the results of the performed verification checks by means of ex-
tended waveforms calledtracesthat show the evolution of the values of signals in
possible models of the system under specification.

RAT – Requirements Analysis Tool RAT Users Manual • 3

The Main Window

RAT main window when in Property Assurance mode is shown in Figure 4. In
the upper part of the body of the window there are the tables for the management
of signals and requirements; in the middle the are the tabbedtables for the man-
agement of possibilities and assertions (on the left), and the control panel for the
verification tasks (on the right); the bottom of the window isoccupied by a text
box showing the output of the verification activity.

Figure 4: Property Assurance main window.

Adding and modifying elements of a project. The activities of adding, edit-
ing and removing items from the sets of signals, requirements, possibilities and
assertions follow the same pattern regardless the class theitems belong to. The
screen-shots in Figure 5 and 6 show the windows for creating anew signal, a new
requirement, a new possibility and a new assertion respectively, all of which are
accessible by clicking on the first one among the buttons on the top right of the
table of the proper class.

Note that in Property Realizability signals are distinguished of being System or
Environment. Similarly, requirements are distinguished of being Assumption or
Guarantee. For Property Assurance and Property Simulationthese distinctions are
of no importance and therefore ignored.

Once an item is created, it is shown in the table of its class and it is possible to
modify or to delete it by clicking on the proper button on the table of the class of
the item. A window similar to the one used for creation is usedfor editing, and a
warning window will ask for the user’s confirmation before deleting an item. Mul-
tiple selection is allowed (Ctrl keyboard button pressed when left-clicking with
the mouse on the desired items) and hence is possible to open the editing windows

4 • RAT Users Manual RAT – Requirements Analysis Tool

Figure 5: Creating signals, requirements.

of several items at one time, or to delete more than one item atone time. Multi-row
editing and parenthesis highlighting are provided to ease the input of properties and
to make more effective their visualization. Notice that, all the tasks that can be per-
formed on signals, requirements, possibilities, assertion, traces and categories are
accessible also through pop-up menus that shows when the user right-click with
the mouse on an item; the pop-up menus offer also selection facilities like “select
all”, “deselect all” and “invert selection”.

Since, as pointed out in [2] Section 2, it may be of great use tosimulate a property
when the results of a Property Assurance check are not of easecomprehension,
the user is provided with the possibility of loading an item that belongs to re-
quirements, possibilities or assertions into Property Simulation mode; this can be
accomplished by selecting the desired items and clicking onthe last one among the
four buttons on the top right corner of the proper table, or byselecting the voice
Load into Simulation from the pop-up menu accessible by right clicking on
the selected items. The logical conjunction of the selecteditems is copied in the
Property text box in the Property Simulation mode (See Section 1.3).

Verification The verification tabbed panel, on the middle right of the window,
provides the user with control on the execution of the verification engine used to

RAT – Requirements Analysis Tool RAT Users Manual • 5

Figure 6: Creating possibilities and assertions.

perform Property Assurance related checks. The two tabs, shown in Figure 7, al-
low to chose among SAT-based BMC techniques or BDD-based MC techniques,
and to set the respective options. As far as SAT-based BMC is regarded, it is pos-
sible to choose which SAT solver to use, whether incrementaltechniques should
be used, the depth of the BMC problem generated, and the valuefor the loop back.
With regard to BDD-based MC, the user can define the partitionmethod, whether
using Cone of Influence techniques, and which kind of dynamicreordering should
be used, if any. For more details on the meaning of these options, the user can refer
to the user manual of NUSMV [5].

Figure 7: Verification panels.

6 • RAT Users Manual RAT – Requirements Analysis Tool

Traces and their management

The results of verification checks are shown as traces, whichare shown as new
tabs beside theOutput tab as depicted in Figure 8.

Figure 8: An example of trace visualization.

Each trace has a name and is connected to the requirements andthe possibili-
ties/assertions it has been generated from, i.e. those thatwere selected to perform
the check of which the trace is the result. These data allow totrack the dependen-
cies among the traces and the other elements of the project; for example, knowing
which requirements a trace depends on allows the system to signal it as out of
date or no longer meaningful if some changes have been performed to one of the
requirements the trace depends on.

In Figure 8, the trace shown is composed by an initial step followed by an infinite
repetition of the second step, i.e. a loop. Loops are signaled by a little black
arrow close to the name of the step they start from. Color of steps changes to help
depicting the finite prefix and the infinite loop in traces, light gray for the former,
dark gray for the latter.

To ease their management and to reflect the typical use case ofProperty Assurance,
traces are organized in differentcategoriesamong which the following system
categories are provided:

New: the category where traces generated in the current session are stored by
default;

RAT – Requirements Analysis Tool RAT Users Manual • 7

Default: the category where up to date traces that have been generatedin pre-
vious sessions are stored;

Out of date: the category where out of date traces are stored (a trace is out of
date when some element in its dependencies have been deletedor modified);

Trash: the category of traces the user scheduled for deletion.

A simple way of managing traces with respect to categories isprovided by the
buttonsTrash andMove on the right of each trace in the main window, as shown
in Figure 8.

Clicking on the buttonTraces in the tool-bar, it is possible to access the window
of thetrace manager, as shown in Figure 9, which allows the user to manage traces
by editing the associated data, moving them from a category to another category,
deleting them, creating new categories and editing the dataconnected to categories.

Figure 9: An example of trace visualization.

At the top left corner of the trace manager window the list of categories is shown,
where each category has a name and aDescription; it is possible to select more
than one category and, on selection, the contained traces are shown on the right part
of the window grouped under the name of the category they belong to. In the left
bottom corner of the window there is the list of the names of the traces contained
in the selected categories, by selecting or de-selecting names it is possible to show
or hide traces in the right part. As shown, each trace is visualized together with its
complete data that comprise a brief description, the notes entered by the user, the
list of dependences and the history (when the trace was generated, etc.). Categories
and traces tables on the left part of the window, allow the users to edit, delete or
add items, in Figure 10 and Figure 11 the editing dialog for categories and traces
are shown.

8 • RAT Users Manual RAT – Requirements Analysis Tool

Figure 10: Editing a category.

Figure 11: Editing a trace.

An Example

In this section we work out a simple but meaningful example that covers the most
relevant Property Assurance features of RAT, and link together in a cohesive view
the usage information given in the previous section.

The example we are going to tackle is the specification of a bounded counter (an
instantiation of what described in [2] Section 2.2); a first naivë specification could
be the one shown in Figure 12.

The specification is based on the following signals:

inc: the signal that models the issuing of increment operations

dec: the signal that models the issuing of decrement operations

v: the signal (integer valued) that models the value of the counter

this signals are shown in theSignals table together with their type and notes.

TheRequirements table collects three requirements that constitute an initial spec-
ification of the functional behavior of the counter, and of the assumptions on the
environment

R1: prescribes that any increment operation is immediately followed by a unit
increment in the value of the counter

RAT – Requirements Analysis Tool RAT Users Manual • 9

Figure 12: Counter - initial specification.

R2: prescribes that any decrement operation is immediately followed by a unit
decrement in the value of the counter

R3: states that increment and decrement operations must not occur simultane-
ously (this is a constraint on the environment)

Once this initial specification is entered by the user, it is possible to proceed and
check it for consistency, i.e. checking that the requirements are not mutually con-
tradictory. This can be achieved by selecting all the requirements, by ticking the
check boxConsistency check, and by clicking on theCheck button in the con-
trol panel at the top. Figure 12 shown the result of this checkis positive: the output
from the verification engine, shown in the tabOutput, reports that the run of the
engine has completed successfully and no warning message isissued by RAT. As
shown in the control panel, this check has been performed using SAT technology
with a depth of the problem equal to 30, and checking for all possible loop-backs.

Now that we have an initial consistent specification, we can start analyzing it and
check if it describes exactly the behavior we have in mind.

The first step can be that of checking that the value of our counter is always coher-
ent with the inputs received. In particular, we want to be sure that if no operation
is issued, the value of the counter does not change, whateverthe value is; this is
the meaning of assertionA1 shown in theAssertions table in Figure 13.

OnceA1 has been entered, we can check it against all the requirements and get the
result shown in Figure 13: the assertion is signaled asfailed by a red bullet next to
its name in theAssertions table, and a trace showing a counterexample toA1 is
created and shown at the bottom of the main window. Note that asummary of the
information related to the trace is provided close to the trace itself. By examining

10 • RAT Users Manual RAT – Requirements Analysis Tool

Figure 13: Counter - checking an assertion.

the trace, we notice that the counterexample shown has an initial stepin which the
value of the counter is -2 and no operation is issued, and a second step in which
the value of the counter is changed to 4. Note that the last state is actually the first
and only one of an infinite loop, as signaled by the little black arrow close to the
name of the step in the header of the trace. A review of the requirements reveals
that actually nothing is said about the evolution of signalv when no operation is
issued, and this leads us to the definition of a new requirements that fills this hole

R4: prescribes that if no operation is issued the value of the counter remains un-
changed

Figure 14 illustrates the new state of the specification and shows that ifR4 is added,
the check forA1 passes, as signaled by the green bullet in theAssertions table.
Note that in this case the check has been performed using BDD technology with
the Sift dynamic reordering method. In this case no trace is shown because no
counterexamples has been found.

Once the check forA1 is passed, we gained more confidence on how the counter
reacts to the stimuli of the environment. Now we can check that the system ex-
hibits desired behaviors, i.e. that it is possible that something happens, even if not
mandatory. For example, we may want to check that it is actually the case that the
value of the counter may change, this means looking for a scenario in which the
system evolves reacting to the stimuli of the environment insuch a way to modify
the initial value of the counter. This check can be performedby the possibilityP1
shown in Figure 15.

The possibility is signaled aspassedin thePossibilities table, and a trace cor-
responding to a witness of the desired system behavior is shown; the trace exhibits

RAT – Requirements Analysis Tool RAT Users Manual • 11

Figure 14: Counter - fixing the specification.

Figure 15: Counter - checking a possibility.

12 • RAT Users Manual RAT – Requirements Analysis Tool

a five step loop in which initiallyv is 1 and two consecutiveinc operations are
issued (the value ofv changes accordingly) and then twodec operations are issued
making the value ofv going back to 1 in the fifth step.

The result of a work session is a specification, a set of possibilities, a set of as-
sertions and a set of traces corresponding to the results of the checks performed.
Figure 16 shows the trace manager window with the traces generated during this
session (actually other traces are shown that we do not described but that have been
generated within this section).

Figure 16: Counter - traces of the session.

1.3 Property Simulation in RAT

Note: Property Simulation is not supported within the COMPASSProject. How-
ever, for completeness of this methodological section Property Simulation is de-
scribed here for the sake of readability.

This section illustrates the RAT Property Simulation features. Some general GUI
features will be introduced, followed by explanations of the main and analysis
windows and an example scenario for a simple standard property.

RAT – Requirements Analysis Tool RAT Users Manual • 13

The Main Window

When enacting Property Simulation in RAT you will see the RATmain window
to change to Property Simulation mode as illustrated in Figure 17. Please note that
the user is able to switch the mode at any time using the switchcontrols in the
upper right of the main window.

Figure 17: Property Simulation Main Window.

In the figure you see the three main sections of the Property Simulation interface.
On the upper left you can see a multi-row text entry window where you can enter
your property. The various lines are combined to a single property, thus you may
split your property to several lines for a better overview.

The middle section of the Property Simulation window consists of two widgets
showing waveforms. The upper one illustrates the derived example behavior using
waveforms. The different waveforms illustrate the signal values for every time step
in the trace. The whole trace is determined by the finite part as prefix completed by
an infinite repetition of the infinite parts. The background color indicates whether
the value is in the finite or infinite part of the trace. Light grey corresponds to
the finite part and dark grey to the infinite part. You may select a single signal
to highlight its waveform, there is no further impact of sucha selection. The
trace/signal view offers the possibility to request features for the next trace. A
click on the right button of your mouse on a step of the trace produces a pop-up
window offering the following requests:

• Insert timestep: Another time-step is entered just before the one you have
clicked on. The default value is ‘Do not care’, which means that you don’t
have any preference for the value in the next trace.

• Remove timestep:A given time-step is removed in the next trace.

• Fix value to False: In the next trace this value shall be false.

• Fix value to True: In the next trace this value shall be true.

• Set to ‘Do not care’: You do not care about the signals value at this time
step in the next trace. This option can be used to unset required values.

14 • RAT Users Manual RAT – Requirements Analysis Tool

When you establish requests you will notice that the color ofthe trace for this
signal and time step changes to red. Red parts in the trace show that these parts are
requested to be fixed to the current values for the next trace request. You’ll also
notice that the status Value at the bottom changes to “Outdated” and the waveform
color of the formula evaluation changes to black. This meansthat the tree-view for
the Formula/Property evaluation does not correspond to thetrace anymore.

The tree-view for the Formula/Property evaluation beneaththe Trace/Signal view
is not editable, so you cannot shape the waveform here. It illustrates and corre-
lates the single parts of the property to the trace. For each time-step of the trace
the property and all its sub-formulae are evaluated to true or false, visualized by
waveforms organized in a tree. The tree structure is derivedfrom the property to
illustrate the dependencies between the parts of the property. Use the tree-view to
make sure that the formula has been parsed the way you expected. Relating the
waveforms to each other shows how the different parts of the property interact with
each other interpreted on the trace.

The last part of the Property Simulation main window is the control and status bar
located at the bottom. It includes the following contents:

• Witness Button: Pressing this button you can ask RAT to derive a trace
living up to the property and the feature requests you may have stated.

• Counterexample Button: With a click on this button you can ask RAT to
provide a trace contradicting the property or possible feature requests.

• Status: At this location you can always see what RAT is up to when doinga
computation and the status of the trace and evaluation when idle. Examples
areWitness, Counterexample,V IS Error,

• Analysis Button A click on this button raises another second analysis win-
dow offering coverage information and controls as discussed in the very next
section.

The Analysis Window

The analysis window completes the information and controlsof the main window.
For each sub-formula of the property the window contains coverage statistics and
offers controls to request for the next trace that this part should evaluate globally
or finally to true or false.

The coverage statistics tell how often a properties part evaluates to true and false,
and how often this evaluation change during the evaluation of the trace. These
statistics are derived for the finite and infinite parts of thetrace, complemented by
numbers for the entire trace including possible changes at the interconnection of
the trace and the transition from the last state to the first state of the infinite part.

The graphical concept uses a tree-view for organization of the visualization and
offers a ‘close’ button at the bottom to close the window. Thetree-view shows the
coverage statistics for each part of the property and the controls to request features.

RAT – Requirements Analysis Tool RAT Users Manual • 15

The first column contains the name of the part, followed by nine columns to illus-
trate the coverage information. For each part there are columns labeled‘0’ ,‘1’ , and
‘C’ , corresponding to the numbers for false (‘0’), true (‘1’) and evaluation result
changes(‘C’). The three sections for the finite, infinite parts, and the whole trace
are distinguished by the used background colors. The sections for the finite and
infinite parts use the same colors used for the waveforms; light grey and dark grey.
The section for the whole trace uses a very dark grey.

Additional four columns offer the option to request features for the next trace. You
can request a sub-formula to evaluate a property eventuallyto true (‘F(==1)’),
globally to true (‘G(==1)’), finally to false (‘F(==0)’), or (‘G(==0)’). A green
zero for a request indicates that there is no request for the next trace, whereas a
red one indicates a desired request. Pressing the right mouse button on a value
produces a pop-up window enabling to set or unset a request.

Considering the tree structure and the coverage information can be of great help
in exploring the behavior of a property. Considering the example of a property
requiring an request to be acknowledged the coverage information may show that
there is no request happening (columns labeled ‘1’ show zerovalues for request)
for a vacuous trace. So by setting the request to be eventually true you can ask for
a more interesting trace for example. When a part of the property doesn’t evaluate
to a specific value at any time you may ask for an illustration of what happens if it
does by seating the corresponding request.

Figure 18: Property Simulation Evaluation Analysis Window.

An example

This section illustrates RAT Property Simulation functionality with a simple ex-
ample. For this example scenario we will consider the informal property that a
request should be eventually acknowledged .

First we have to start a new project. This is done by calling rat and clicking the
“New” button at the top of the window. As for this example we decide to do Prop-
erty Simulation only we can skip the step of entering projectdetails at this stage;
Property Simulation extracts the information it needs for its computations directly

16 • RAT Users Manual RAT – Requirements Analysis Tool

from the property itself. With a click on the finish button (Figure 19) we are pre-
sented with the main window of Property Simulation (Figure 20). Please note
that if you would like to perform Property Simulation in an existing requirements
engineering project for a device under construction, you can switch to Property
Simulation by clicking the control button at the top right ofthe main window.

Figure 19: Create a project for Property Simulation.

Figure 20: Property Simulation Start Window.

Our first guess on PSL syntax for our informal property isG(r 7→ F(a)). G (“Glob-
ally”) is the short form of the PSL operator “always”, and F (“Eventually, Finally”)
is the short form of the “eventually!” operator. We enter that property into the en-
try widget of the Property Simulation main window and press the ”Witness” button
to ask for an example trace fulfilling and illustrating the property. We’re presented
with the trace illustrated in Figure 21.

The trace is vacuous because there is no request, but actually there are acknowl-
edges. We see that the property does neither need a request tohappen, nor that
there is a request for an acknowledge to occur. Although the example is very sim-
ple and we can obtain that information by judging and interpreting the waveforms

RAT – Requirements Analysis Tool RAT Users Manual • 17

Figure 21: Witness for propertyG(r 7→ F(a)).

Figure 22: Analysis of trace for propertyG(r 7→ F(a)).

we now press the analysis button to show the coverage information illustrated by
Figure 22.

A check of the analysis reassures our preliminary conclusions. To gain a more in-
teresting trace we request a request to eventually happen asillustrated in Figure 23.
We keep the analysis window opened and ask for a new witness bypressing the
corresponding button in the main window.

We are presented with the trace illustrated in Figure 24. As we are satisfied with
the trace and want a request to happen for future examples we change our property
to G(r 7→ F(a))&& F(r). By asking for a new witness we want to recheck this
change.Please note that the requests are reset for every trace; so you might not
include a forgotten request forever resulting in the miss ofinteresting behaviors
during property exploration.

The derived trace illustrated in Figure 25 however, unveilsthat we have got some-
thing wrong, as the tree structure does not fit our intention.By the investigation
of the tree structure we uncover that we have forgotten two brackets. We have to
put theG() part of the property into brackets, otherwise thelogical andbinds the
F(r) to the implication part and not to the globally part. We add additional brack-

18 • RAT Users Manual RAT – Requirements Analysis Tool

Figure 23: Ask for a request on signal r.

Figure 24: Witness with request for propertyG(r 7→ F(a)).

ets to the property to gain(G(r 7→ F(a)))&& (F(r)). By asking for a new witness
we recheck the property and are satisfied with the presented trace and evaluation
(Figure 26).

Now we want to check if a single of the two acknowledges conforms to the prop-
erty. Again this might be obvious for our example, but it might not be obvious for
a more complex one. Thus we shape the trace by editing the waveform. We fix the
values of signalr to the values of the trace and signala to true for time-step one
and false for the remaining time-steps (Figure 27).

Asking for a new witness produces a trace illustrating that our requests are satisfi-
able (Figure 28).

We have used all elements of the Property Simulation interface so far, and now it
is up to you to explore the property and the potential of Property Simulation on
your own. To give you some initial direction we would like to suggest to enhance
the property to allow an acknowledge only on a request, or to limit the length of
an acknowledge to one time-step.

RAT – Requirements Analysis Tool RAT Users Manual • 19

Figure 25: Witness for propertyG(r 7→ F(a))&& F(r).

Figure 26: Witness for property(G(r 7→ F(a)))&& (F(r)).

1.4 Property Realizability in RAT

Note: Like for Property Simulation, Realizability is not supported within the
COMPASSProject. However, for completeness of this methodologicalsection Re-
alizability is described here for the sake of readability.

This section illustrates the RAT Property Realizability features.

For using Realizability feature the enhanced version of NUSMV [4] is required.
See Section?? for details.

20 • RAT Users Manual RAT – Requirements Analysis Tool

Figure 27: Shaping the trace.

Figure 28: Witness for shaped trace request.

Realizability Problem

Informally, Property Realizability problem can be described as follows. All signals
are divided into two disjoint sets – uncontrolled (environment) signals and the
controlled (system) signals. Similarly, every requirement belongs to one of two
sets – the assumptions and the guarantees. At every step of a play at first the
environment variables are set to some unknown-beforehand values and then system
decides values for its variables. Assuming that the assumptions hold the task of
the system is to satisfy the guarantees. If the system is ableto do that for every
possible behavior of the environment the specification is Realizable. Otherwise
the specification is Unrealizable. For the detailed definition of the Realizability
problem see [4].

RAT – Requirements Analysis Tool RAT Users Manual • 21

Specifying a Realizability Problem

As was told in Section 1.2 the distinction of signals in System and Environment as
well as the distinction of requirements in Assumption and Guarantee is important
only for Property Realizability. Thus now, a user have to specify explicitly whether
a signal is an environment signal or a system signal. For example, Figure 30 shows
the wizard to specify an environment signalinc of type boolean. Similarly, a

Figure 29: Creating signals, requirements.

Figure 30: Specification of an environment signal in RAT.

requirement describes an assumption on the behavior of the environment, or a
guarantee on the behavior of the system. For instance, Figure 31 show the RAT
wizard to specify the system guaranteealways(forall M in {-6:5}: ((v=M

&& inc) -> next(v=(M+1)))).

Figure 31: Specification of a system guarantee property in RAT.

22 • RAT Users Manual RAT – Requirements Analysis Tool

The Main Window

Once all the signals and all the requirements have been inserted in the RAT project,
it is possible to move to the Realizability window from wherethe button that per-
forms the check of realizability for the selected properties can be pressed as to
start the check for realizability. Figure 32 shows the Realizability window with an
example of realizability problem.

Figure 32: The Realizability window in RAT.

The Check button on the right in the Realizability window of RAT activates the
realizability checks. The result of the check is showed in the left text area. In this
particular example the specification is unrealizable because the system may force
the violation of the guarantee requirements by setting bothsignalsinc anddec
up.1 To avoid such behavior we can add an assumption requirementnever(inc
&& dec). With this assumption the specification becomes realizable(Figure 33).

A set of assumptions and guarantees is internally convertedinto an equivalent
NUSMV game structure, and depending on the generated game structure the cor-
responding check algorithms are invoked (with the help of the enhanced version of
NUSMV [4]). The generated game structure is printed in the log tab, as to allow
the user to inspect it. Note that, such a game structure may have fresh variables
introduced during conversion. If the tool is not able to convert a RAT specification
into a NUSMV game structure an error message with the subexpression causing
the problem is printed out.

1At the moment no debugging information is printed out. Though the enhanced version of
NUSMV [4] in many cases is able to construct a strategy for the system as well as for the environment.
In future such support may be added to RAT.

RAT – Requirements Analysis Tool RAT Users Manual • 23

Figure 33: The Realizability window in RAT.

24 • RAT Users Manual RAT – Requirements Analysis Tool

2 RAT Architecture
In the following the design and implementation of RAT will bediscussed. The
general information about RAT implementation and run time environment will
be described in Section 2.1. Section 2.2 explains architectural patterns used during
RAT development. The hierarchy of the RAT software is described in Section 2.3.

2.1 Architecture and Implementation Notes
RAT is a stand-alone multi-platform application that runs in one process. Even if
multi-threading is used to run external verification engines, the GUI part fits into a
single main thread.

RAT has been fully developed with thePythonobject-oriented programming lan-
guage, and the GUI part relies on thePyGTKgraphical toolkit to draw itself to the
screen, and to handle the interaction with the user.

The coding followed a few standards ”de facto”. Classes, methods and functions
names followPyGTK’s convention (seehttp://www.pygtk.org), that derives
from the GTK’s one (seehttp://www.gtk.org). Style and indentation are strictly
Pythoncompliant. Packages and filenames are java style, but slightly less restric-
tive: e.g. a filefoo and foo.py contains definition of classFooAndFoo, but may
contains the definitions of other classes if convenient.

RAT uses external tools to check properties for Property Assurance, Simulation
and Realizability. In particular currently it relies on theNUSMV and VIS model
checkers that are written in Posix C language. The tools are called and used by
RAT as external processes, and are kept separated from RAT byan abstraction
layer calledStubthat exports a standard interface.

RAT is based on several other software entities, that affectits software architec-
ture. The picture in Figure 34 shows the main set of layered software entities which
RAT relies on. The layers depict the dependencies among the entities, as higher
parts depend on lower parts.

At the top is positioned the RAT Application, gray shaded to make it clearly dis-
tinguishable from the other parts.

The single parts are described in the following from the bottom to the top.

Operating System & Runtime System Libraries Those depend on the specific
architecture implemented on the host computer. Currently RAT has been
tested underGNU/Linuxwith a 2.4 and 2.6 kernel.

RAT – Requirements Analysis Tool RAT Architecture • 25

Figure 34: RAT- Software parts and collocation

GTK Toolkit GTK is a set of libraries that provide a pretty platform independent
support for drawing and handling graphical widgets like windows, buttons,
text entries, fonts, etc. Seehttp://www.gtk.org for further information
about GTK and its components.

Python Library This is a general multi-platform runtime environment provided
by the Python environment. It provides a large set of features and data
structures to be used from anyPython-based application. It also provides a
portable abstraction layer over the underlying Operating System, making the
application platform independent. Seehttp://www.python.org for further
information.

NUSMV and V IS These are the Model Checkers RAT is currently based on.

PyGTK Bindings This is aPythonbinding that allowsPythonprograms to use
the GTK Toolkit. See athttp://www.pygtk.org for further information.

MVC & Observer Infrastructure This is aPythonpackage that helps to design
and develop GUI applications. It implements theModel-View-Controllerand
theObserverpatterns developed specifically forPyGTK.

RAT Application This is the set ofPythonpackages that implement the RAT
application. The underlying layers make RAT platform independent, and the
internal sub-partTool Stubsinsulates RAT even from the model checkers.

2.2 Architectural Patterns

RAT has a pretty complex structure, as it currently fits in seven packages, about 65
modules and 12300 lines ofPythoncode including comments. RAT is character-
ized by strongly interconnected features, and by the need ofhorizontal communi-
cation among independent parts. Furthermore, it provides many different indepen-
dent views over the same objects, and those views are often potentially editable by
the user. Whenever one of those view is changed by the user or by RAT itself, all
the other should react accordingly.

26 • RAT Architecture RAT – Requirements Analysis Tool

To reduce the structural complexity, to keep a clean design,and to minimize the
development and maintenance costs, two architectural patterns were considered:
The Model View Controller (MVC) and theObserverpatterns, see [3].

The Model-View-Controller pattern

MVC is an architectural pattern that forces the designer to break up the application
being designed among three main parts: a Model, a View and Controller. The
traditional implementation of this pattern reflects the normal data flow of non-GUI
applications: data input, data processing, and result presentation. Historically, the
MVC pattern is an attempt to map this natural data flow to the GUI design. In fact,
it associates the data input to the Controller, the data processing to the Model, and
the result presentation to the View.

In RAT this pattern is implemented in theMVC and Observer Infrastructure. This
implementation wanted to be different from the traditionalone, as it is specific for
the underlying graphical toolkit (PyGTK) and language (Python) to exploit their
peculiarities and features. In particular, a part of the traditional View’s features
have been moved to the Controller, and the model has been madenot aware of
the existence of any Controller or View. In combination withtheObserverpattern
(see next section), this allows for a real separation of the application logic from the
presentation layer.

Model Contains the logic of the program, intended as data and data manipulation
routines. Models can communicate with other models (especially with mod-
els that they contain), but do not know the other parts of theMVC pattern,
namely the Controller and the View. This limitation guarantees the insulation
between the application logic and presentation.

View Contains the presentation layer. The View constituted by a set of graphical
widgets organized as a forest (typically a single tree). A single widget is
one atomic GUI element, like a button, a text label, a window,etc. Often
widgets are containers for other widgets, hence widgets areorganized in
trees, where vertices represents the containment relations. As for the models,
views do not know the models they are connected to, as the connection is
delegated to the controllers. This is another variation with respect to the
original MVC pattern, as this implementation is intended to fit better with
thePyGTKtoolkit.

Controller Contains the actions that must be carried out when a view event re-
quires the interaction with the model’s logic. The Controller is always con-
nected to a single Model, and to a single View, making a sort oflink among
these two separated parts of the pattern. If a Controller canbe connected to
one Model, the same model can connect more controllers at a given time.

RAT – Requirements Analysis Tool RAT Architecture • 27

The Observer pattern

The Observerpattern connects the application logic to the presentationlayer, by
allowing the latter to be notified when the former changes.

TheObserverpattern is ofter used together with theMVC pattern, and to a certain
extent it may be considered as complementary, as it handles the data flow from the
model to the view, whereas in theMVC pattern the communication goes generally
from the View to the Model through the Controller.

This communication is carried out without making the model even know the exis-
tence of the view, by using observable properties within themodel, and by defining
observers over those properties. The observers will be notified of any changing that
occur to the observable properties.

In RAT theMVC and Observer Infrastructureprovides an implementation for both
the patterns. In particular, any Model can contain observable properties, and any
Controller is by default an Observer for the Model it is connected to.

2.3 Software Structure
The software structure of RAT is strongly affected by the patterns it is based on,
and by the other software entities it relies on, that have been already shown in
Figure 34.

The main part of RAT is represented by its core, fully based ontheMVC & Ob-
server Infrastructure. At the core sides, there exist services and resources, thatare
available transversally to the core. Figure 35 provides more details about the core
and the provided services.

Models

MVC & Observer Infrastructure

Glade
Files

Resources

Views

Controllers
Model

Checkers

Utilities and
Services

Tool Stubs

Threading
Control

Images

XML
Schemata

Figure 35: RAT- Software Structure

At the leftmost side of Figure 35 are depicted the most important services that are
available to models, controllers and views. These servicesdo not fit well with the
MVC andObserverpatterns as they do not have any associated view, or any user
interaction.

Utilities and Services Contains general utilities, globally accessible data, etc.

28 • RAT Architecture RAT – Requirements Analysis Tool

Tool Stubs Stubs are those entities that isolate RAT from the external Model
Checkers. Stubs export an interface known to RAT, and each model checker
has an associated stub. The result is that RAT can call a modelchecker
careless of the specific Model Checker it is actually calling.

Threading Control Provides fine-grained portable control over threads. This ser-
vice is used for example in stubs invocation, for running themodel checkers
in background, for controlling the associated process, andfor capturing its
output.

At the rightmost side of Figure 35 are depicted those resources that are exclusively
used by the RAT Views. Noticeable resources are:

Glade Files As already mentioned, a Views is a forest of widgets. The widgets
can be build and connected each other by hand, or by using programming
tools likeglade(seehttp://glade.gnome.org). This tool can be used to
visually design a forest of widgets representing the view’swidgets. With
very few limitations, this tool can be used then to set the properties of all
widgets, and to associate action to be carried out when a certain events oc-
cur (signals). For example a widget like a button can be associated with a
function name to be called when clicked. The result of this creation and set-
ting process is a glade file, that can be loaded at runtime by the MVC and
Observer Infrastructurethat provides the needed support for Views creation
based on glade files, and to connect the associated Controllers that provide
the implementation of signals actions.

Images Contains icons, and other images to be shown by the views.

Tools Stubs

As already mentioned, the interaction with the model checkers like NUSMV and
V IS is managed by aStub, a software entity that provides platform and Operating
System independent support for running generic external model checkers. The
execution of a model checker is restricted to a stand-alone thread that controls the
model checker within asession. The session is monitored, and can be stopped at
any time if the underlying Operating System supports process interruption. Also,
the stub provides access to the session I/O, allowing to capture the model checker
standard output and error, and to control its standard input.

A stub execution is a sequence of events:

1. The stub is initialized.

2. A session is initialized.

3. The session is prepared (setting of session options).

4. The session is run.

5. Session results are processed.

6. The session is de-initialized.

RAT – Requirements Analysis Tool RAT Architecture • 29

7. The stub is de-initialized.

The phases from 2 to 6 may be possibly repeated indefinitely.

A generic stub might control a model checker in any way, either in batch mode,
in interactive mode or through its library. In RAT the stubs that control both
NUSMV and VIS use the model checkers in batch mode, launching their respec-
tive executable files. This is achieved by specializing the generic stub classes, by
implementing some interfaces and overloading some class methods that handles
the execution of a single session in batch mode.

A vertical view over the Software Structure

The RAT software structure has been split horizontally by using theMVC and Ob-
server Infrastructure. There exists also a vertical splitting that breaks the software
structure up through a hierarchy of software entities.

Figure 36: RAT- Hierarchy of main software entities

Figure 36 depicts the hierarchy of the main software entities that occur within
RAT. Each of the boxes represents a software entity, and eachvertex of the hi-
erarchy tree is a containment relation, where cardinality is not expressed. That
means for example that an Application contains one (or more)software entities to
represent a Project and the Options of the Application.

The way each software entity is implemented depends on the entity’s role. Those
entities that need to be shown, will follow theMVC pattern, and will be mapped
down to three object-oriented classes (or to a triple of a limited set of classes) to as-
sociate to each entity a Model, a View and a Controller. For example, the entity ap-
plication’s Options has a model to hold the options, and a couple View/Controller
to present the options to the user, and to allow the user to modify the options.

30 • RAT Architecture RAT – Requirements Analysis Tool

Those entities that instead do not need to be shown (e.g. the stubs), will be mapped
directly down to one class, or to a set of classes.

In the following the software entities depicted in Figure 36are detailed.

Application The application is the top-level entity. When the RAT executable file
is run, a triple Model, View and Controller of this entity will be instantiated
and connected each other, and RAT will finally enter in the main event loop
to handle user interaction and events.

Application Options This entity is a container for application’s options. For ex-
ample tools paths, and other general purpose options shouldbe localized
within this entity. A the moment this entity is empty, and there is not an
associated View for it.

Project This entity represents a RAT project. The project’s model contains most
of the application logic, meaning that most of the application’s models are
contained within this model. The view is embedded within theapplication’s
main window whenever a project is created, and it is constituted by a large
number of sub-views corresponding to the contained entities.

Project Options This entity is a container for the project’s options. Similarly to
the Application Options entity, this entity is currently empty, and there is no
associated view.

Signals This entity contains the set of signals used by Property Assurance and
Realizability.

Requirements This entity contains the set of requirements used by Property As-
surance and Realizability.

Property Assurance This is the entity for Property Assurance. Its view is shown
when the Property Assurance feature is selected at the application level.

Property Simulation This is the entity for Property Simulation. Its view is shown
when the Property Simulation feature is selected at the application level.

Property Realizability This is the entity for Property Realizability. Its view is
shown when the Property Realizability feature is selected at the application
level.

Traces Manager This entity handles the set of traces that have been generated
in the project. Also, this entity organizes the set of traceswithin a set of
categories that traces belong to.

Assurance NUSMV Stub The Property Assurance NUSMV stub handles the in-
teraction of RAT with the NUSMV model checker when Property Assurance
is run. This entities has no associated View and Controller,and it is imple-
mented by a single class. This class is the specialization ofa more generic
classes hierarchy that provides support for implementing specific tool stubs.

Realizability NUSMV Stub The Property Realizability NUSMV stub handles
the interaction of RAT with the enhanced version of NUSMV [4] when
Property Realizability is run. This entities has no associated View and Con-
troller, and it is implemented by a single class. Similarly to the Property
Assurance NUSMV Stub already available in RAT, this class is the special-
ization of a more generic classes hierarchy that provides support for imple-
menting specific tool stubs.

RAT – Requirements Analysis Tool RAT Architecture • 31

Possibilities Contained within the Property Assurance entity, this entity repre-
sents the set of possibilities for Property Assurance.

Assertions Contained within the Property Assurance entity, this entity represents
the set of assertions for Property Assurance.

Signal This entity represent a single signal. The model contains information about
the signal, like the name and type information. The view is shown when the
user wants to create or edit a signal.

V IS Stub Like the NUSMV Stubs entities, but specific for the VIS model checker.

Trace A trace is the result of model checking, and can represent either a witness
or a counter-example. In RAT there exist several view over a trace, as they
can occur within the main application window, and within theTrace Manager
window. In general a trace can be shown as a graphical waveform, with some
associated information like the category it belongs to, thenumber of steps,
the loop information, etc.

Property This entity represent a single property, like a requirementor a possibil-
ity. The model contains information about the property, like the name and
formula. The view is shown when the user wants to create or edit a prop-
erty. There exist a dependency between a property and those traces there
were generated from it. Whenever a property’s formula is changed, the cor-
responding traces will be invalidated.

More information about RAT implementation details can be obtain in [2].

32 • RAT Architecture RAT – Requirements Analysis Tool

3 References

[1] R. Bloem, R. Cavada, A. Cimatti, I. Pill, M. Roveri, S. Semprini, and A. Tchaltsev.
RAT: A tool for formal analysis of requirements. InDemo Session of the 17th European
Conference on Artificial Intelligence, Riva del Garda, Italy, 2006.

[2] R. Bloem, R. Cavada, C. Eisner, I. Pill, M. Roveri, and S. Semprini. Manual for property
simulation and property assurance tool, November 2005. Prosyd Delivarable D1.2/4-5.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented
Software Architecture: A System Of Patterns. John Wiley & Sons Ltd., West Sussex,
England, 1996.

[4] A. Cimatti, M. Roveri, and A. Tchaltsev. Manual for property realizability tool, December
2006. Prosyd Delivarable D1.2/8.

[5] NUSMV home page.http://nusmv.irst.itc.it/.

[6] I. Pill, S. Semprini, R. Cavada, M. Roveri, R. Bloem, and A. Cimatti. Formal analysis
of hardware requirements. In Ellen Sentovich, editor,Design Automation Conference
(DAC), pages 821–826. ACM, 2006.

[7] PROperty based SYstem Design PROSYD.http://www.prosyd.org/, 2006.

[8] Accellera, Property Specification Language - ReferenceManual - Version 1.01.http:
//www.eda.org/vfv/docs/psl_lrm-1.01.pdf, April 2003.

[9] RAT — Requirements Analysis Tool.http://rat.itc.it/.

RAT – Requirements Analysis Tool References • 33

