(will be inserted by the editor)

Software Tools for Technology Transfer manuscript No.

Formal Analysis of Requirements in Temporal Logics*

R. Bloem'!, R. Cavada?, A. Cimatti? I. Pill', M. Roveri?, A. Tchaltsev?

1 Graz University of Technology
2 Fondazione Bruno Kessler

The date of receipt and acceptance will be inserted by the editor

Abstract. Formal languages are increasingly used to
describe the functional requirements of circuits. These
requirements are used as a means to communicate design
intent and as basis for verification and synthesis. In each
of these settings, it is very important that the require-
ments describe the design intent precisely. Although for-
mal requirements can be hard to understand and subtle,
they are seldom the object of verification. In this paper
we present techniques, guidelines, and a tool to explore
formal specifications and to assure their quality. We de-
fine a technique to interactively explore the semantics
of a specification by simulating its behavior for user-
defined scenarios. Furthermore, we define techniques to
automatically check specifications against a set of user-
provided universal properties, which must be satisfied
by the specification, and a set of existential properties,
which must not be contradicted. Using our requirements
analysis tool RAT, a designer can also investigate the
realizability of a specification. The proposed techniques
support the user in the iterative development and refine-
ment of high-quality specifications. RAT was used suc-
cessfully in several industrial projects.

1 Introduction

Formal properties are increasingly used to describe the
functional requirements of electronic designs. Formal re-
quirements are used both for verification and as a means
to describe the specifications of a system before it is
built.

The use of a formal language to state the require-
ments (the specification) is a first and substantial step

* This work was supported by the European Commission under
Contracts 507219 (PROSYD) and FP7-2007-IST-1-217069 (CO-
CONUT)

towards a high quality specification, as it makes subtle
questions explicit that otherwise might be hidden in the
ambiguity of natural language. It also allows us to sup-
port designers with automatic tools.

A formal notation is obviously not enough to ensure
the quality of a specification. The observation that the
specification is often incorrect or incomplete motivates
the work in coverage and vacuity. (See below.) Still, there
is relatively little published work on the systematic qual-
ity control of formal specifications. This is somewhat
surprising, as industrial data show that about 50 per-
cent of product defects originate in flawed requirements
and that about 80 percent of rework effort can be traced
back to requirement defects [Wie01].

In this paper, we present several techniques to assist
the user in writing high quality requirements. Our Re-
quirements Analysis Tool RAT supports the user with
an iterative work flow in the crucial task of writing high
quality formal requirements.

We note that such requirements analysis and engi-
neering is not the activity of producing an implemen-
tation satisfying given properties. Rather, the focus is
on the requirements themselves. This is especially im-
portant when the properties are written before the de-
sign phase, as they probably should be. In that case, the
implementation will depend crucially on the correctness
and completeness of the specification. This holds even
stronger in case systems are automatically constructed
from the specification, a scenarios that is becoming in-
creasingly realistic [KV05,PPS06,JB06, BGJT07a).

We propose a Requirements Analysis process based
on three techniques.

Property Simulation. offers a convenient way to explore
the semantics of specifications. Similar to simulating
a design, the user may provide stimuli to see how a
property “reacts” in given scenarios. Property sim-
ulation allows the designer to interactively explore
the behaviors associated with the requirements. She

2 Authors: Formal Analysis of Requirements in Temporal Logics

may construct a set of traces that satisfies the re-
quirements, or, alternatively, a set of traces that vio-
lates it. The designer can peruse these traces, change
them by adding constraints and then observe changes
in their evaluation, and review coverage information.
In this way she can explore the semantics and assure
their correctness.

Property Assurance. provides a means to formally ver-
ify properties themselves. By means of property as-
surance, it is possible to check that the requirements
are strict enough to rule out unwanted behavior and
that they are not too strict to allow for certain de-
sirable behavior. User specified universal properties
must hold uniformly, while existential properties de-
fine desired corner-case behavior.

The use of properties to validate the requirements is
a powerful method that enables a formal analysis of
the specification. Universal and existential properties
do not have to be complicated to be useful. Since they
are compared against the global set of requirements,
even extremely simple universal and existential prop-
erties may stimulate the whole set of requirements
and can pinpoint problems due to complex interac-
tions between independently specified functionalities.

Property Realizability. allows the user to check whether
the specification can be implemented. The signals are
partitioned into input signals controlled by the envi-
ronment, and output signals controlled by the sys-
tem. Likewise, the properties are partitioned into as-
sumptions on the behavior of the environment and
guarantee that the system must obey. The realizabil-
ity check verifies whether there is an implementation
of the system that behaves according to the speci-
fication for any provided input sequence. (This is a
stronger requirement that satisfiability.)

Our requirements analysis tool RAT implements and
integrates the proposed techniques and provides a conve-
nient graphical user interface for the suggested require-
ments analysis process. RAT supports the linear tempo-
ral part of PSL [EF06] and its subset LTL [Pnu77]. A
designer can use RAT to develop and manage the speci-
fication, to archive requirements analysis results, to sim-
ulate requirements behaviors for user defined scenarios,
and check the specification for realizability.

The quality of the specification has been a concern in
work on coverage analysis and vacuity. In coverage anal-
ysis [KGG99,KV03,HC06], one checks how complete a
specification is, that is, whether or not it allows for al-
ternative, presumably incorrect, behavior. Initially, the
question was whether a specification adequately covers a
design, but the question can also be asked of the specifi-
cation in isolation [Cla07, GKDO7], by checking to which
extent the specification constrains allowed behavior. In
general, however, a series of specifications may be writ-
ten, each a refinement of the other. Especially at the
higher level, specifications are abstractions that allow
for more than one behavior and thus do not exhibit full

coverage. Our approach complements coverage analysis
by allowing the user to decide what is and what is not im-
portant about the specification. It should be noted that
this requires more manual effort than coverage analysis,
which is largely automatic.

Vacuity detection [BBDERO01,KV03] checks the
quality of a specification by making sure that properties
do not pass “vacuously.” For instance, the property that
every request is eventually acknowledged is satisfied by
a system in which requests never occur. The user should
be warned in such cases, as the behavior of the system is
probably not what she expected. Vacuity is traditionally
seen as a property of the specification and the design in
combination. However, more recent work also considers
the notion of vacuity that is inherent to the specification
[CS07,FKSV08]. We consider this work complementary
to ours. Again, our approach is more general, but also
requires more effort.

Higher level, methodological solutions propose tech-
niques to check system descriptions against user-defined
properties. In [HABJO05], a tool is presented that al-
lows the users to define a system using the Software
Cost Reduction model and to perform sanity checks
and state or transition invariant checks on the specifica-
tion; [LRH98] and [HWT03] contain similar proposals for
the SpecTRM and RSML™¢ languages, respectively. In
[BBDG™02] the design exploration through model check-
ing was introduced, which enables the user to explore
a design by generating interesting traces. All these ap-
proaches are in the setting of design verification, where
the quality of a design is analyzed. In contrast, our ap-
proach focuses on the requirements themselves and ad-
dresses the early stages in a design cycle, those before
an implementation or a design is present.

The remainder of this part is structured as follows.
The next section gives the necessary definitions. In sec-
tions 3.1, 3.2, and 3.3 we depict property simulation,
property assurance, and property realizability. In Sec-
tion 3.4 we propose our integrated requirements analysis
approach. A use case can be found in Section 4. In Sec-
tion 5 we cover the technical details of our approach. In
Section 6 we describe the RAT tool, and report industrial
feedback on its use from several projects. A conclusion
on our current work and a perspective on future work
can be found in Section 8

This paper is based on [PSCT06,BCPT07].

2 Linear Temporal Logic

Although RAT supports the industrial and user-friendly
Property Specification Language PSL [EF06], we will
limit ourselves to Linear Temporal Logic (LTL) in this
paper. LTL was introduced in [Pnu77].

We adopt the positive normal form (a.k.a. negation
normal form) for the definition of LTL. The set of atomic
propositions A of LTL corresponds to the set of inputs

Authors: Formal Analysis of Requirements in Temporal Logics 3

and outputs of the design. LTL formulae in positive nor-
mal form are defined using the temporal operators X
(next time), U (until), and R (releases), as follows:

— true, false, the atomic propositions, and their nega-
tions are formulae;

— if ¢ and ¢ are formulae, then so are ¢ V 1, p A 1,
X, p U1 and ¢ R.

We define a few abbreviations: F ¢ abbreviates true U ¢,
G ¢ abbreviates false R ¢, and ¢ W ¢ abbreviates (¢ U
1) V Gp. The Boolean connectives — and < are also
defined as abbreviations in the usual way.

We define the set of states to be S = 24. A state is a
set s C A such that the atomic propositions in s are true,
those not in s are false. The semantics of LTL are defined
with respect to an infinite path 7 € 5. We denote by
7' the suffix of 7 starting at s;. The satisfaction of an
LTL formula along path 7 is defined as follows.

T |= true

7 [~ false

TED iff pe sy

TE-p if e
tEeVvy ff mEeporTEY
tEeAY it mlEpandw EY
T EXp iff 7l
TEeUy iff

TEeRy iff

A formula is satisfiable iff there is an infinite trace
such that m = ¢. It is valid iff all traces satisfy ¢. A
formula is realizable if there is a Mealy machine M such
that all possible infinite executions of M satisfy ¢. (We
will not define Mealy machines formally.) Satisfiability
and validity of LTL are PSPACE-complete, realizability
is 2EXP-complete [Var96].

3 Requirements Analysis

3.1 Property Simulation

Property simulation allows the user to exercise the be-
havior of a single property or a complete specification.
Thus, the user can make sure that she understands the
precise meaning of the specification and the interaction
of the properties.

Property simulation allows the user to exercise the
specification much like an executable implementation.
Simulation is a well-known and widely used concept for
the exploration of a system’s behavior. To conduct a sim-
ulation, the designer provides a design with input stim-
uli and observes the resulting behavior on the system’s
outputs. By investigating simulation results for various
input scenarios, the designer can evaluate and verify the
behavior of the design. Property simulation transfers this
concept to the exploration of formal property semantics.
In this setting, the user has more freedom. For instance,
unlike a hardware simulation, property simulation does

not require the input stimuli to be complete. This means
that a designer may specify an incomplete input vector,
and then ask the simulator to provide either a complete
input output trace that is either wvalid (the specifica-
tion is fulfilled) or contradicting (the specification is vi-
olated). The designer can further constrain a derived
trace by fixing signal values for certain time steps, and
then ask the simulator for a valid or contradicting trace.

Based on a classification of the signals into inputs and
outputs, the designer can perform a “what-if” analysis
by defining input values and asking for corresponding
outputs. Dually, a “how-can” analysis can be performed
by setting (some of) the output signals and asking how,
if at all, these outputs can be achieved.

An explanation of the derived trace is provided as a
set of waveforms: We show the value of each subformula
of the specification at every step of the trace. In temporal
logics such as LTL, the truth value of a subformula at
a given time step depends only on the truth value of
its subformulae and on its truth value in the next time
step. Thus, understanding the evaluation of a property
is reduced to understanding very local relations.

We also allow the designer to require that a signal or
subformula is set to 1 (or 0) either throughout the whole
trace, or at least once. We also provide the designer with

3i>0:7" EyYAV0<j<i:n | pquantitative information on the activity of signals and
Vi>0:7" | Vv30<j<i:n) = psubformulae, stating how often they become 1 (or 0)

and how often they change their values. This provides
a form of coverage information, allowing the designer to
ascertain how well the requirements are exercised.

In a way, property simulation makes the require-
ments executable and simulates them in much the same
way that a hardware design is simulated. Thus the use
of property simulation is very intuitive: traces are pre-
sented as waveforms and fixing signals corresponds to
constraining a simulation, both concepts that a designer
is accustomed to. Our method gives the designer con-
crete examples of a property’s behavior and allows her
to ask concrete questions about it.

8.2 Property Assurance

Property assurance is a complementary technique to
property simulation that provides the designer with a
more general means to assess whether she has written
the right set of properties.

The basis for property assurance are three sets of
properties:

— I': The set of requirements describing the system be-
havior, possibly including some assumptions on the
environmental behavior.

— &y A set of universal properties that must be guar-
anteed by I.

— @p: A set of existential properties, each of which de-
fines corner case behavior that must be allowed by
I.

4 Authors: Formal Analysis of Requirements in Temporal Logics

The two sets @y and @p consist of golden proper-
ties to be checked on the requirements. Any behavior
allowed by the requirements must fulfill all properties in
®y;. Using @y, the user can verify whether the require-
ments are underconstrained with respect to desired sys-
tem invariants. To check for overconstraining, the user
may add desired corner case behavior to the set of ex-
istential properties @g. She can check then whether I’
allows specific behavior such that for each property in
& there is at least one trace satisfying the considered
property. Another important aspect of the requirements
is consistency: the properties in I' may not contradict
each other. That is, there has to be at least one behav-
ior consistent with I".

Property assurance assists the designer in tackling
the following three questions:

1. Is the set of requirements I" consistent?

2. Does the satisfaction of I" imply the satisfaction of
all properties in &7

3. Is it possible to satisfy I" and any single property in
D7

It is obvious that the last two questions check over-
and underconstraining of the requirements. The formu-
lations are closer to our technical implementation: we
check the implication I" — @y to verify universal prop-
erties @y, and for any ¢ € g we check that it has a
model that is also a model for I'.

Our approach is similar to the application of model
checking to validate a design against a specification. The
main difference is that the specification takes the place
of the model, and we write a further set of properties to
ensure that the formal requirements really capture the
intended meaning.

To assist the designer in improving the specification,
property assurance provides her with additional infor-
mation based on the results of the performed checks. As
in model checking, when an universal property does not
pass, we show a trace that is compatible with the specifi-
cation but violates the property. This behavior can then
be used as starting point to correct the specification. If
an existential property is satisfied by the specification,
the designer is presented with a trace compatible with
both the specification and the property. On the other
hand, if an existential property contradicts the specifi-
cation, we show the designer a subset of the specification
properties that is responsible for the violation.

Inconsistent specifications can be dealt with similarly
by providing the designer with a minimal inconsistent
subset of the requirements. If the requirements are mu-
tually consistent, the designer is presented with a set of
representatives traces, and she can either perform prop-
erty simulation, write additional universal and existen-
tial properties, or refine the requirements.

3.3 Property Realizability

Property realizability checks whether the specification
is realizable, i.e., whether there is an implementation (a
circuit or a program) that fulfills the specification for
any possible behavior of the environment. The basis for
property realizability are the following:

— &, S: Where £ is the set of input signals controlled by
the environment, while S is the set of output signals
controlled by the system;

— I': The set of requirements, expressed in LTL over
atomic propositions on £ U S (written I'(£,S)), de-
scribing the system behavior and possibly also in-
cluding some assumptions on the behavior of the en-
vironment.

The realizability problem for a specification I' consists
of checking whether there exists a program such that its
behavior satisfies I' [PR89)]. Specifications for which such
a program exists are called realizable or implementable.
Dually, specifications for which such a program does not
exist are called not realizable or unrealizable.

The realizability problem can be formalized as a two
player game between the system we are going to realize
and the environment. At every step of the game, first the
environment produces an input, and second the system
produces an output. The system wins if it can guarantee
that the resulting infinite trace fulfills the specification.
Thus, checking for realizability amounts to checking for
the existence of a winning strategy for the system in the
corresponding game.

The specification I is consists of two separate sets —
a set of assumptions A and a set of guarantees G, thus
a specification is given as a tuple I' = (4, G).

If a specification is unrealizable, a frequent debug-
ging aid for the developer is a counter-strategy for
the environment [Sti95, TA99, BSL04, BCD*07]. While a
counter-strategy can help a developer to understand how
the environment can prevent the system from fulfilling
its obligations, the developer has to figure out which
parts of the specification are responsible for unrealiz-
ability by herself. Moreover, while counterexamples are
considered a very valuable way of feedback in verification
[CV03], a counter-strategy can be much more complex
than a single path and, therefore, more difficult to un-
derstand.

In property realizability the user is not only pre-
sented with a yes or no answer. We also present debug-
ging information in the case (A4, G) turns out to be ei-
ther unrealizable or realizable. She can “zoom into” the
specification by being presented as debugging informa-
tion fragments of the specification that are by themselves
(un)realizable, in order to facilitate the understanding of
the problem. Thus, the designer can be presented with
a specification (A’, G') as an explanation for a specifica-
tion I' = (A, G) where A’, G’ are subsets of A, G.

Authors: Formal Analysis of Requirements in Temporal Logics 5

p
Create initial I,
L initial TA, Dp.)
~
Check consistency,
L check T A, Pp)
4 7
Inspect and explore

L representative traces)

missing trace

incorrect trace

Update I
Modify/Add possibility

Add possibilities,

assertions

Update I'
Modify/Add assertion

== |
=" Lo

No
{ Update I H Check realizability]

Yes

'

Fig. 1. Guidelines for requirements analysis.

3.4 Methodology

In this section, we describe how property simulation, as-
surance, and realizability can be used together to assist
a designer in the requirements engineering process. Fig-
ure 1 suggests one way in which property simulation and
property assurance may interact. We describe the flow
here and present an example in the next section.

The designer comes up with initial approximations
of the requirements I', universal properties @r, and
existential properties ®g. We propose an iterative ap-
proach, checking whether the requirements are consis-
tent, whether they allow for all existential properties
stated in @g, and whether they do not contradict any
universal property in @y. For any problem, the designer
is presented with diagnostic information, as explained in
the previous sections, and consequently refines I', @,
and @5 to fix it.

At any point the designer may use property simu-
lation to explore the semantics of properties to isolate
the origins of any problem encountered, and add or re-
fine I', @g, and Py. By visual inspection of the traces
and by checking the correctness of user-defined variants,
the designer makes sure that all desired traces are viable
and that no undesirable ones are present. The explana-
tions provided help the designer understand why certain
traces satisfy the requirements and others do not.

Whenever the designer finds a trace that should be
allowed, but is erroneously excluded, she first corrects
the requirements. Then she generalizes the trace and
adds it to @g. Likewise, if an unwanted trace is present,

the requirements are corrected and an universal property
is added to @y to rule out all similar traces. In this way,
whenever the designer changes the requirements, it is
possible to automatically perform an exhaustive regres-
sion check by verifying that all universal and existential
properties are preserved.

Subsequently, the designer may decide to add extra
universal and existential properties. After any change,
the requirements are again verified for consistency and
for adherence to @y and @p.

Finally the designer checks whether the requirements
are realizable. If the requirements are unrealizable, the
designer revises the specification.

Prior to writing the initial approximations, a novice
may use property simulation to experiment with the lan-
guage. By examining the semantics of temporal opera-
tors and gaining confidence by writing and examining
example properties, she gains experience and confidence
she can draw on when writing an actual specification.

4 Use Case

The following example illustrates the approach using
the development of the specification for an arbiter. The
arbiter’s signals consist of the input signals r; and ro
for requests and the output signals g1 and go for the
corresponding grants. Thus, we have & = {r1,r2} and
§= {glv 92}'

In the following, we take the liberty of writing Vi €
{1,2} : p(i) to denote p(1) A p(2). We start with a very

6 Authors: Formal Analysis of Requirements in Temporal Logics

simple specification, where I" consists of the following
properties.

G1:Vie{1,2}: G(ri — Fg)
G2: G=(g1 A\ g2)

Requirement G1 states that for each request line, any
request must be eventually answered with a grant. Re-
quirement G2 states that there must not be simultane-
ous grants on g; and go. For more complex properties,
it could be useful to simulate their behavior first, be-
fore adding them to I'. A first check shows that I is
consistent.

Initially, the sets @r and Py, of existential and
universal properties respectively, are empty. We start
by adding the universal property UI to check whether
grants do not come too close together.

Ul :Vie{1,2}: G((gi NX—13) — X—gs)

Universal property Ul states that if a grant is given in
one step and no request is issued in the next step, then
no grant can be given in the next step either. Check-
ing I' against Ul we are presented with the following
counterexample. (All traces shown are lasso shaped: they
consist of a finite prefix and a suffix which is repeated
ad infinitum.)

rr: 0 0 0 (O L)
gi: 0 0 0 (O .
ro: 0 0 0 (O L)
g2: 1 11 (1)

The trace shows that we forgot to rule out initial spuri-
ous grants. Thus, we add a new requirement G& stating
that there must be no grants until there is a request.

G3:Vie{1,2}: (mg:Ur;)

Another check against Ul produces the following coun-
terexample showing that our specification still violates
the universal property. (As the arbiter is symmetric, in
the following we will focus on one request/grant signal
pair only.)

rir: 100 (0)
gi: 110 (0)

With G8 we eliminated initial spurious grants, but we
forgot to rule out those following a grant. We further
constrain the specification adding a new requirement G4
stating that whenever there is a grant, no more grants
can be issued by the arbiter until there is a further re-
quest.

G4 :Vie{1,2}: G(gi — X(—gs Ury))

Once we have checked {G1, ..., G4} for consistency, and
got a positive answer, we re-check against Ul and we are
assured that the flaw has been solved.

To become more confident of the current specifica-
tion’s semantics, we simulate I" to obtain a set of com-
pliant traces. The derived set includes the following two
traces.

#RAT - dac =
File Edit View Help
0 (] [o &
Mew Open Save | Traces Assurance [Simulation Realizability
Property svublmq-mm|m|m|
G(at= X[lal1uUr]) 5 = i = : =
NameJType JKindiNotes [
1] boolean E req for ack 1
a[1] boolean S ack for req 1
2] boolean E req for ack 2
a[2] boolean S ack for req 2
Property Simulation .
Signals 1SLep1 ‘SlepZ 1Step3 ‘Etﬂj =

al =TT .

2 R | |
Evaluation lStep1]Step? iStepG]Steptl —
= 1G{(al) > [21 U]

= Glfat) > ([tat Uri]) Eer—1

= (at) = (X[121 Ur]) I e

at =i—— .

< X[tal UA]) C 1

v [lal un] —1 | =

a = |
r . T |5

[[
Witness Counterexample Status/Result- Counterexample Analysis

Fig. 2. Formula evaluation example.

rr: 00 (0O ...) rr: 11 (1 ...)
gr: 0 0 (0O ...) gr: 11 (1

The tool does not provided us with a trace consisting of
a single request with a single grant. Since we would like
to examine the specification’s behavior for that simple
case, we construct the following trace as stimulus and
we simulate I" for compliant traces.

ry: 1.0 (0 ...)
gi1: 10 (O)

The simulator unexpectedly tells us that the provided
stimulus does not satisfy the specification. When we con-
sider the unfolded sub-formula evaluation of a counterex-
ample as depicted in Figure 2 (the trace consists of a fi-
nite stem from step 1 to 3 and an infinite loop of step 4),
we find out that G(g1 — X(—= U ry)) is not true initially
because (—g; U rp) is false in the subsequent step.

Indeed, the strong until as used in G3 and G4 re-
quires that r; must eventually appear, which contradicts
our intent. The weak until, W, differs from the strong
until, U, in the fact that it does not require the second
operand to become true, but is satisfied also if the first
operand stays true for the whole trace. As this behavior
matches our design intent, replacing the strong until in
G3 and G4 with a weak until solves the encountered
error:

G3:Vie {1,2}: (—gi Wry)

G4 Vi€ {1,2}: G(gi — X(—gi Wr;))

Authors: Formal Analysis of Requirements in Temporal Logics 7

To avoid similar errors in the future we generalize the
trace to the following formula, which we add it to our
set of existential properties @g. The meaning of EI is
that r; is low infinitely often.

E1:Vie{1,2}:FG—ny

Subsequently, we re-check our specification for compli-
ance to ¢y and P.

Now, as the specification implements our basic idea,
we can ask more subtle questions about the interaction
of requests and grants. For instance, is it true that re-
quests and grants are always balanced? To derive an an-
swer, we define a scenario in which there are two requests
answered by a single grant, and we simulate the specifi-
cation for featured behavior for this case.

ri: 11 (0 ...)
gi: 01 (0 ...)

The simulation succeeds and shows us that multiple re-
quests can be answered with a single grant.

To rule out scenarios in which the environment is
too demanding and issues too many requests, we add a
new assumption requirement A5. This requirement re-
stricts the environment, so that it may not issue further
requests until the pending one has been answered.

A5 :Vie{1,2}: G(ri — (-1 Ugs))

To make sure that the previous scenario is not possible
anymore, we add a universal property U2 to @y. This
property states that an unacknowledged request must
never be followed by another request without a grant in
between.

U2 :Vie{1,2} : G((ri A—gi) A X(—g; Ury))

Since we have changed the specification, we re-check
it for consistency, and we check it against all existen-
tial and universal properties, including U2. This check
passes.

Finally, we have derived a specification for our ar-
biter, consisting of {G1,..., G4, A5}, that meets our
design intent. We found and addressed several flaws in
the specification by investigating the specifications se-
mantics, we developed universal and existential proper-
ties to check the specification against, and we elicited a
constraint on the environment behavior by means of a
special requirement on the inputs. The obtained specifi-
cation’s quality has been assured by both formal checks
and the exploration of the specification’s behavior. The
specification is also realizable.

At this point the customers asked for a change in the
requirements, to take into account timing constraints.
Thus, we further restrict GI1 by adding G1.1 and G1.2.

G1.1:G(r1 — g1)
G1.2 : G(r2 — (g2 V X g2))

G1.1 requires that request r1 has to be granted imme-
diately. G1.1 requires that request r has to be granted
immediately or in the next step.

Next, we check satisfiability of the new specification
{G1,...,G4{,G1.1,G1.2, A5}, whether all the existen-
tial properties are satisfied, and whether all the universal
properties holds. All these checks pass without problems.
However, the check for realizability no longer passes. In-
deed, if both requests arrive simultaneously and are fol-
lowed by an 71, then there is no possibility to grant g
either at the time ry is requested nor at the immediately
successive step.

The specification can be made realizable, by modify-
ing G1.1:

G1.1:G(r1 — (g1 VXg1))
G1.2 : G(ra — (g2 VX g2)).

As our requirements are realizable, we obtained again a
realizable high quality specification.

5 Technical Aspects

5.1 Automata-Based and Bounded Model Checking

Our approach relies on automata-based and bounded
model checking techniques.

In the automata-based approach [VW94], typically
BDD-based, we derive an automaton for the property
and we check its language for emptiness. If the language
is empty, there is no behavior satisfying the property.
On the other hand, accepting traces in the automaton
correspond to examples of behavior that is consistent
with the property. These traces, consisting of a finite
stem and a loop that is repeated infinitely often, can
be obtained by counterexample construction, a standard
feature of any model checker [CGMZ95].

Bounded Model Checking (BMC) [BCCZ99] searches
for bounded witnesses (or bounded counterezamples) for a
temporal property. A bounded witness (counterexample)
is an infinite path on which the property holds (does not
hold), which can be represented by a finite witness of
length k. A finite witness can represent infinite path in
the following sense: either the finite witness represents
all its infinite extensions, or it consists of a finite stem
and a loop repeated infinitely often from state k& back
to state I. (In the latter case we speak of (k,[)-path.)
In BMC all possible (k,)-paths of a specification I" are
encoded as a propositional satisfiability problem SAT(I")
and given as input to a SAT solver. The parameters k
and [are modified until we either find a witness (the
formula is satisfiable) or reach a sufficiently high value
of k to guarantee completeness.

Automata derived for properties in languages like
PSL might be alternating [BDBF*05], which would
cause an exponential blowup in the state space when
translating it to a nondeterministic version needed for
many model checking engines [MH84,CGP99]. Direct
translations are also possible [BCPR07,CRST06a].

8 Authors: Formal Analysis of Requirements in Temporal Logics

Property

——

Automaton

Language-Emptiness
Check

Trace Empty
Example Behavior No such Behavior

.

Coverage Info

Feature Requests

/

Fig. 3. Property simulation methodology searching for a witness.

5.2 Property Simulation with User Constraints

Our implementation of property simulation relies on
automata-based model checking techniques: we derive
two automata, one for the property and one for the sim-
ulation stimuli, and we perform a language emptiness
check on their product (see Figure 3). If the language
is empty, there is no property behavior compatible with
the stimuli. On the other hand, accepting traces in the
automaton correspond to examples of the desired behav-
ior.

More formally, suppose we are looking for a trace
that satisfies both the stimuli and the property. We de-
rive an automaton Ag for the simulation stimuli and an
automaton A, for ¢. We then construct an automaton
Ap for the product of Ag and A, [CGP99]. An accept-
ing run of Ap corresponds to a witness of ¢ that satisfies
the stimuli.

To explore the differences between complying and
contradicting behavior to a formula the user can also
search for behavior that satisfies the stimuli but con-
tradicts the property. To construct such a trace, we de-
rive an automaton A-, for the negated property -y and
then we construct an automaton Ap for the product of
As and A-,. An accepting run of Ap corresponds to a
trace that satisfies the simulation stimuli but contradicts
the property.

This approach extends simulation stimuli beyond fix-
ing signal values at certain time steps to the support of
more general user constraints such as “signal ¢ shall be
true for at least one time step in the future”. Techni-
cally we support any simulation stimuli expressible via
automata.

< Evaluation Analysis

/o
Formula coverage -> request features

|n|1|c ol1|clof1]c F(=1}|G(=1}|F(=U]|G(=U}| =

Signal/Formula

~ F(G((a) && (X{b)))) 020 0 0 0
= G{(a) && (X(b)) 020 0 00
< (a) && (X(b}) 020 0 00

a 020 0 00

~ X(b) 020 0 00
111 0 00

b

Close

Fig. 4. RAT’s coverage analysis window.

5.3 Representative Traces

Using simulation, one must consider a variety of repre-
sentative scenarios to gain a good overview of a prop-
erty’s behavioral aspects. Coverage and vacuity analy-
sis concepts, e.g. [KGG99,BBDERO1], play a significant
role in this context. To understand a property, a user
must explore traces allowed by a property, with special
attention to the “extreme behaviors”. When exploring
the traces of a property, coverage can be of great help to
check whether behaviors have been unnoticed so far.

A trace is called uninteresting for a certain subfor-
mula ¢ if the trace fulfills the specification even if ¢
is replaced by an arbitrary formula [BBDERO1]. Con-
sider the formula ¢ = G(r — F g). First, traces is which
no request occur satisfy ¢ vacuously because they are
uninteresting for the subformula Fg. Second, traces in
which grants occur infinitely often are uninteresting for
the subformula r. Third, traces that consists of finitely
many requests and grants are interesting for all subfor-
mulae. We argue that all three classes of traces should
be represented in the feedback to the users, as each of
them highlights a different aspect of the property.

We furthermore show the user how many times each
subformula is true or false as well as the number of times
its truth value changes. We do this both for the finite
stem and for the loop. (See Figure 4.) These figures give
an indication of the coverage provided by the traces: how
many and which aspects of a property are addressed by
the traces. Subformulae or behavioral patterns not exer-
cised by current simulations may suggest future simula-
tion stimuli.

5.4 Property Assurance

Property assurance relies on validity /satisfiability of the
logic used for the specification. We can check consistency
of I by computing whether SAT(I") holds, i.e., whether

Authors: Formal Analysis of Requirements in Temporal Logics 9

there exists at least one behavior that satisfies I'. We
check whether an existential property ¢ € ®@p is sup-
ported by computing whether SAT(I" A ¢) holds. A uni-
versal property ¢ € @4 holds if I' — ¢ is valid, i.e., if
all possible behaviors are compatible with ¢. We check
this by computing =SAT(I" A —¢).

Note that all the property assurance problems can
be seen as standard model checking problems with com-
pletely unconstrained models. For instance, if ¢ is an
universal property we model check I' — ¢, while if it is
an existential property we model check —(I" A o). The
model checking problem can be tackled using automata-
based model checking techniques or BMC.

In the automata-based approach we derive an au-
tomaton for the property assurance problem, and we
check its language for emptiness. In the case of an exis-
tential property check, if the language is empty there is
no behavior compatible with both the specification and
the property. If, on the other hand, the language is not
empty a trace of the automaton is a witness of a be-
havior compatible with the specification and with the
existential property. (Consistency can be handled in the
same way.) Dually, in the case of universal properties, if
the language is empty there are no behaviors compati-
ble with the specification that contradict the property.
If the language is not empty, a trace of the automaton
is the counterexample compatible with the specification
and falsifying the universal property.

SAT-based bounded model checking can be used for
checking an existential property by looking for a (k,1)-
path satisfying I" A ¢. Dually, for checking an universal
property, if we find a (k,l)-path satisfying I' A =, we
have a counter-example compatible with the specifica-
tion and violating the property.

The automata-based and BMC-based model check-
ing techniques complement each other. SAT-based BMC
model checking is usually faster than automata-based
BDD model checking in finding a bounded witness,
and several optimization to the original BMC encod-
ing [BCCZ99] have been developed (see e.g. [KHLO5]
for a discussion). Extensions to make the approach not
only able to disprove a property, but also to prove the
property holds have been developed (e.g. [KHLO5]).
BMC-based verification is efficient for checking existen-
tial properties and for checking consistency. A valid sce-
nario for a property, if one exists, can typically be pro-
duced in a few seconds. BMC-based verification is also
good for preliminary verification of universal properties.
If no counterexamples are found up to a reasonable k,
then we can proceed with the more expensive BDD-
based approach. Notice that the BDD approach does not
perform well on large specifications because of the size
of the underlying automaton. (See [FLM™04] for further
details.)

As a final remark, property assurance problems in-
herently differ from model checking problems, where the
computation bottleneck originates from the model rather

than from the property. In addition, the notion of diag-
nostic information is completely different: rather than a
counterexample trace, we can show the designer infor-
mation in terms of the requirements, and, for instance,
in the case of an existential property ¢ € @p single out
a (hopefully small) subset of I" that is inconsistent with

®.
5.5 Realizability of Properties

The realizability problem can be formalized as a two
player game among the system we are going to realize
and the environment: the system plays against the en-
vironment in such a way that at every step of a game
the environment moves and then the system try to move
by producing behaviors compatible with the specifica-
tion. The system wins if it produces a correct behaviors
regardless of the behaviors of the environment. In this
framework, checking for realizability amounts to check
for the existence of a winning strategy for the system
in the corresponding game. This is tackled by generat-
ing from the specification a deterministic Rabin automa-
ton using the Safra construction [Saf88]. This automaton
is interpreted as a two player game among the system
and environment and it is traversed as to find a witness
of the non emptiness of the language of the automaton
(which corresponds to a correct implementation of the
given specification) [PR89].

The high complexity established in [PR89], and the
intricacy of Safra’s determinization construction, have
caused the synthesis process to be identified as hope-
lessly intractable and discouraged many practitioners
from ever attempting to implement it. However there
are several classes of properties restricted to particular
subsets of LTL, which can be synthesized efficiently with
polynomial algorithms. One of the most recent and ad-
vanced results is achieved in [PPS06] where for the class
of Generalized Reactivity(1) specifications (from now on
referred to as GR(1) specification) is presented a (sym-
bolic) polynomial algorithm for extracting a program
from a GR(1) specification.

A GR(1) specification has the form (A4,G) =
({eF. 0%, ¢80}, {97, 0%, 3 })- For a € {€, S}, the tuple
(¢F: ¢%, g is such that each formula has the following
form:

— ¢¢ - a formula of the form A, I; where every I; is a
propositional formula over signals (¢¢ is over € and
¢¢ is over £ U S). These formulas represent game
initial conditions of the environment and system, re-
spectively.

— ¢% - temporal formulas of the form /\; R; where every
R; is a propositional formula over signals £ U S and
expressions of the form X v where v € £ if a = &
and v € EUS if @ € §. These formulas represent
the transition relations for the environment and the

system, respectively.

10 Authors: Formal Analysis of Requirements in Temporal Logics

— ¢y, - temporal formulas of the form A\; GF A; where
A; is propositional formula over signals £ US. These
properties represent the liveness or fairness condi-
tion of the design.

Intuitively the definition of GR(1) specifications causes
the environment and the system interact the following
way: a play starts by the environment choosing initial
values for its signals such that ¢f is satisfied and the
system initializing its signals such that gof holds. Sim-
ilarly, at every consecutive step of the play at first the
environment assigns its signals, trying to satisfy the en-
vironment transition relation ¢%, and then the system
does the same with its signals and its transition relation
go‘]%. For an infinite behavior the environment and the
system try to satisfy their liveness conditions goi and
(pi, respectively. A play who first violates its constraints
looses. If all constraints are satisfied then the system
wins.

The class of GR(1) specifications is sufficiently ex-
pressive to provide complete specifications of many de-
signs [PPS06].

The algorithm described in [PPS06], and imple-
mented in [BGJT07b,JGWBO07,CRSTO08], reduces the
realizability problem of a GR(1) specification to the
problem of computing a set of winning states for a prop-
erly constructed specification obtained from a GR(1)
specification as described above. We refer the reader to
[PPS06] for details of the transformation and of the al-
gorithms for computing such set of winning states Wg.
After computing winning state W the last step in iden-
tifying realizability is to check Wy against initial con-
ditions. The game is winning for the system (and thus
the GR(1) specification is realizable) iff formula {2 in 1
is the constant true.

Q2 =VE.(o§F — 3S.(p7 AWs)) (1)

6 RAT

The concepts presented in the previous sections were
used in the design and development of RAT [BCP*07].
The high level architecture of RAT is depicted in Fig-
ure 5, while Figure 6 offers a screen-shot of the graphical
user interface (GUI).

With RAT the user can take (a subset of) proper-
ties of the specification and simulate their behavior for
user-provided stimuli (property simulation) as well as
determine consistency or perform checks against user-
defined universal and existential properties (property as-
surance). Finally she can check them for realizability
(property realizability).

The GUI provides a user-friendly interface to the un-
derlying engines. For example, in order to check uni-
versal properties, the combination of requirements and
universal properties is submitted to a BMC engine. The

‘Specification‘ ‘ Assertion ‘ ‘ Possibility‘ ‘ Stimuli ‘

'

‘Game Structur%

Designer
4
»
A
Ad

‘ Automaton ‘

BDD
Winning

Condition
Check

Emptiness

‘Trace ‘ ‘ No Trace‘ ‘ Yes ‘ ‘ No ‘

. : = \
Wavef Visualizati Property Evaluation
aveform Visualization Coverage Statistics

Fig. 5. RAT architecture.

BMC engine increases k, the length of the path, until ei-
ther a counterexample is found or a user-defined upper
bound for k is reached.

Furthermore RAT’s GUI offers the designer facilities
to manage the specification and acquired analysis results
in a requirements analysis project, which can be saved for
future reference. A project contains the complete status
of the specification and analysis activities: it contains
the sets of requirements, universal, and existential as
well as analysis results and debugging information that is
either generated by the tool or provided by the user. For
example, traces can be stored for future reference and be
associated with additional information, including the set
of properties from which they were generated, whether
they are witnesses or counterexamples, and optional user
notes. This helps the designer in monitoring the current
status and analysis coverage of the specification.

RAT relies on extended versions of the NuSMV and
VIS model checkers [CCGR99,B196] to provide the pro-
posed functionality for PSL specifications. However, our
design allows for an easy integration of other verification
engines to support further languages or verification al-
gorithms.

RAT and its documentation can be obtained from the
http://rat.fbk.eu. Since its first release on June 2006,
we had about 1064 downloads.

7 Feedback from Industry

Several companies experimented with RAT [ABF06].
The experimenters were IBM Haifa Research Labs, Infi-
neon GmbH and OneSpin Solutions GmBH in Munich,
and STMicroelectronics in Agrate, Italy, in Grenoble,
France, and in Bristol, UK. The case studies using RAT
included:

— Two interconnect protocols - the Bus Protocol (ST
France and UK) and the SOC Interconnection Archi-
tecture (IBM).

Authors: Formal Analysis of Requirements in Temporal Logics

a[2] boolean S ack forreq 2

[0 R3-corrected A

ORs G
OR4 G
Property Assurance
Possibilities Assertions
o]Name ‘Status JProperty Motes

< 'RAT - dac
File Edit View Help
0 & m v &
New Open Save Traces Assurance Simulation Realizability
Signals gk [# & Requirements 4 [k & @
Name |Type |Kind |Notes J] |Name |I-(ind |F’ruperry Notes ‘
1] boolean E req for ack 1 I R1 G G (forall i in {1:2}: (r[i] -= F a[i])) Ewvery request is eventually acknowledged
a[1] boolean S ack forreq 1 R2 A never (a[1] && a[2]) There are never two ack at the same time
2] boolean E req for ack 2 OR3 A forall i in {1:2%: ['afi] U ri]]

forall i in {1:2%: ([fafi] W rfil]
G (afi] -= X [fa[i] W r[i]]))

forall iin {12 G ([i] = [¥]i] U afil}}
forall i in {1:2}: (G (a[i] = X [ta[i] U r{il]))

&&

& Check

Sat Technology J BDD Technology I

‘ Consistency

B8

e

forall i in {1:2}: G ((a[i] &&

Al X Uiy = X afi])

@

Solver: MiniSAT |« | Ine [1 SNF
[1 sBMC

Depth: |30 =[] Cam =1 VU

Loop: All Loops |™ ||0 =

= Checking outcomes
Name] ¥ Stepl ‘Stepz | Name: Trace 0
1] 0 0 Dep: R1,R2 A1
a1« 0 0 Cat: MNew
2] . 0 0 g Trash
af2] 1 1
5D Move...
Qutput Trace_0

Fig. 6. A screen-shot of the RAT tool.

— Three SOC communication blocks - the Memory In-
terface (ST France), and the Memory Controller, and
the Bridge (ST Italy).

— One specific-purpose IP design - the Transport Front
End (ST UK). The Transport Front End is a large
IP consisting of several components.

Although the users commented on the immature status
of the tool (since improved), the report shows that our
technology appeals to designers.

“We found the concept of property simulation at-
tractive as it allows a developer to debug her /his
own PSL code easily, quickly and independently”.

Our prototype’s robustness was considered

“High (better than average for a tool this stage of
development, only a few minor failures when the
tool’s capabilities were stressed)”.

Several specification bugs were found with property sim-
ulation, for instance in the Memory Interface. Property
Assurance has also been

“used effectively in specific cases to prove that one
set of properties can be substituted by another”

For the Bus Protocol a property R; of a golden refer-
ence specification I" was improved and replaced by Rs.
The refinement was verified in two steps: first, consider-
ing Ry as universal property for the old version of the
specification I'. For the second step, R; was considered
as universal property for checking the new version of the
specification I = (I' \ {R1}) U {R2}. The designers
involved in the SOC Interconnection Architecture case
study found that the interface and usability features pro-
vided by RAT “make the development process easier and
provide an enjoyable development experience”.

12 Authors: Formal Analysis of Requirements in Temporal Logics

“RAT presents traces in a both intuitive and in-
formative way. The trace is clearly divided into
a finite head and infinite tail, a full tree of sub-
formulas is available and the analysis window al-
lows advance[d] insight.”

They judged property simulation to save both time and
work:

“For about half of the total 33 point-to-point
properties written, the original PSL property was
found to be correct. For more than 10% of the
properties it require[d] more than 4 versions be-
fore a correct PSL statement was found. The
results show that debugging is necessary, since
about half of the properties are wrong on the first
draft. The alternative to debugging the properties
using RAT ([BCE'05]) is involving others to re-
view them. The evidence is that careful review is
necessary as 10% of properties were wrong on the
4th draft. We estimate that a careful review will
take 1.5 PM whereas the debugging using RAT
took 0.5 PM, thus saved 1PM.”

IBM found that

“The ideas of RAT ([BCE105]), especially prop-
erty simulation, have a lot of value to users of
PSL and PSL-based IBM tools. Thus, we started
to design and develop a feature similar to prop-
erty simulation in RuleBasePE soon after starting
this case study.”

According to Cindy Eisner from IBM this feature is al-
ready available in newer versions.

8 Conclusions

conclusions and future work.

Regarding property assurance, we plan to inte-
grate within RAT the advanced techniques as described
in [BCP*06,CRST06b, CRT07] top perform the check.
While to provide the user with useful debugging in-
formation we are integrating the techniques described
in [CRSTOT].

As far as property realizability is concerned we would
like to integrate in the tool the techniques described
in [CRSTO08]. These techniques aims at extracting de-
bugging information from a (un)realizable specification.

8.0.1 Acknowledgements

The authors would like to thank Simone Semprini for
his contributions to earlier versions of RAT and re-
lated technologies. Furthermore we would like to thank
Gadiel Auerbach, Lyes Benalycherif, Cindy Eisner, An-
drea Fedeli, Dana Fisman, Anthony Mclsaac, and Klaus
Winkelmann for their efforts in the industrial case stud-
ies, the detailed feedback, and fruitful discussions.

References

[ABF1t06] G. Auerbach, L. Benalycherif, A. Fedeli, D. Fis-
man, A. Mclsaac, and K. Winkelmann. Case
studies in property-based requirements specifi-
cation, November 2006. PROSYD Deliverable
D1.4/1, www.prosyd.org.
R. K. Brayton et al. VIS: A system for verifica-
tion and synthesis. In T. Henzinger and R. Alur,
editors, Fighth Conference on Computer Aided
Verification (CAV’96), pages 428-432. Springer-
Verlag, Rutgers University, 1996. LNCS 1102.
[BBDERO1] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh.
Efficient detection of vacuity in temporal model
checking. Formal Methods in System Design,
18:141-163, 2001.
[BBDGT02] S. Barner, S. Ben-David, A. Gringauze,
B. Sterin, and Y. Wolfsthal. An algorithmic ap-
proach to design exploration. In FMFE ’02: Pro-
ceedings of the International Symposium of For-
mal Methods Europe on Formal Methods - Get-
ting IT Right, pages 146-162, London, UK, 2002.
Springer-Verlag. LNCS 2391.
A. Biere, A. Cimatti, E. Clarke, and Y. Zhu.
Symbolic model checking without BDDs. In
Fifth International Conference on Tools and Al-
gorithms for Construction and Analysis of Sys-
tems (TACAS’99), pages 193-207, Amsterdam,
The Netherlands, March 1999. LNCS 1579.
G. Behrmann, A. Cougnard, A. David,
E. Fleury, K. G. Larsen, and D. Lime.
UPPAAL-Tiga: Time for playing games! In
Proc. Computer Aided Verification (CAV’07),
pages 121-125, 2007.
R. Bloem, R. Cavada, C. Eisner, I. Pill,
M. Roveri, and S. Semprini. Manual for prop-
erty simulation and property assurance tool,
November 2005. PROSYD Deliverable D1.2/4-
5, www.prosyd.org.
R. Bloem, A. Cimatti, I. Pill, M. Roveri, and
S. Semprini. Symbolic Implementation of Al-
ternating Automata. In O. H. Ibarra and H.-
C. Yen, editors, CIAA, volume 4094 of Lec-
ture Notes in Computer Science, pages 208—218.
Springer, 2006.
R. Bloem, R. Cavada, I. Pill, M. Roveri, and
A. Tchaltsev. Rat: A tool for the formal analy-
sis of requirements. In Computer Aided Verifi-
cation, pages 263-267, 2007.
R. Bloem, A. Cimatti, I. Pill, and M. Roveri.
Symbolic implementation of alternating au-
tomata. International Journal of Foundations
of Computer Science, 18(4):727-743, 2007.
[BDBF'05] S. Ben-David, R. Bloem, D. Fisman, A. Gries-
mayer, I. Pill, and S. Ruah. Automata con-
struction algorithms optimized for PSL, 2005.
PROSYD Deliverable D3.2/4, www.prosyd.org.
[BGJ*07a] R.Bloem, S. Galler, B. Jobstmann, N. Piterman,
A. Pnueli, and M. Weiglhofer. Automatic hard-
ware synthesis from specifications: A case study.
In Proceedings of the Design, Automation and
Test in Furope, pages 1188-1193, 2007.

[B+96]

[BCCZ99]

[BCD'07]

[BCE*05]

[BCP*06]

[BCP*07]

[BCPRO7]

[BGJT07b]

[BSLO4]

[CCGR99)

[CGMZ95)

[CGPYY]

[C1a07]

[CRSTO6a]

[CRSTO6b]

[CRST07]

[CRSTOS]

[CRT07]

[CS07]

[CVO03]

[EF06]

Authors: Formal Analysis of Requirements in Temporal Logics 13

R. Bloem, S. Galler, B. Jobstmann, N. Piterman,
A. Pnueli, and M. Weiglhofer. Automatic hard-
ware synthesis from specifications: A case study.
In Design Automation and Test in Europe, 2007.
To appear in the proceedings of DATE’07.

Y. Bontemps, P. Schobbens, and C. Ldding.
Synthesis of open reactive systems from
scenario-based specifications. Fundam. Inform.,
62(2):139-169, 2004.

A. Cimatti, E. M. Clarke, F. Giunchiglia, and
M. Roveri. NuSMV: a new Symbolic Model
Verifier. In N. Halbwachs and D. Peled, ed-
itors, Eleventh Conference on Computer-Aided
Verification (CAV’99), pages 495-499. Springer-
Verlag, July 1999. LNCS 1633.

E. Clarke, O. Grumberg, K. McMillan, and
X. Zhao. Efficient generation of counterexam-
ples and witnesses in symbolic model checking.
In Proceedings of the Design Automation Con-
ference, pages 427-432, San Francisco, CA, June
1995.

E. M. Clarke, O. Grumberg, and D. A. Peled.
Model Checking. The MIT Press, Cambridge,
Massachusetts, London, England, 1999. ISBN
0-262-03270-7.

K. Claessen. A coverage analysis for safety prop-
erty lists. In Proc. Formal Methods in Computer
Aided Design, pages 139145, 2007.

A. Cimatti, M. Roveri, S. Semprini, and
S. Tonetta. From psl to nba: a modular symbolic
encoding. In Proc. Formal Methods in Computer
Aided Design (FMCAD), pages 125-133, 2006.
A. Cimatti, M. Roveri, S. Semprini, and
S. Tonetta. From PSL to NBA: a Modular Sym-
bolic Encoding. In FMCAD, pages 125—133.
IEEE Computer Society, 2006.

A. Cimatti, M. Roveri, V. Schuppan, and
S. Tonetta. Boolean abstraction for temporal
logic satisfiability. In Proc. Computer Aided Ver-
ification, pages 532—546, 2007.

A. Cimatti, M. Roveri, V. Schuppan, and
A. Tchaltsev. Diagnostic Information for Realiz-
ability. In F. Logozzo, D. Peled, and L. D. Zuck,
editors, VMCAI, volume 4905 of Lecture Notes
in Computer Science, pages 52—67. Springer,
2008.

A. Cimatti, M. Roveri, and S. Tonetta. Syn-
tactic Optimizations for PSL Verification. In
O. Grumberg and M. Huth, editors, TACAS,
volume 4424 of Lecture Notes in Computer Sci-
ence, pages 505-518. Springer, 2007.

H. Chockler and O. Strichman. Easier and more
informative vacuity checks. In Proc. Formal
Methods and Models for Codesign, pages 189—
198, 2007.

E. Clarke and H. Veith. Counterexamples re-
visited: Principles, algorithms, applications. In
N. Dershowitz, editor, Verification: Theory and
Practice, FEssays Dedicated to Z. Manna on the
Occasion of His 64th Birthday, volume 2772 of
LNCS, pages 208—224. Springer, 2003.

C. Eisner and D. Fisman. A Practical Introduc-
tion to PSL. Springer-Verlag, 2006.

[FKSVO08]

[FLM*04]

[GKDO7]

[HABJO5)

[HC06]

[HWT03]

[JB06]

[JGWBO07]

[KGGY9]

[KHLO5]

[KV03]

[KV05]

[LRH98|

[MHS4]

[Pnu77]

D. Fisman, O. Kupferman, S. Seinvald, and
M. Y. Vardi. A framework for inverent vacu-
ity. In Proc. Haifa Verification Conference
(HVC’08), 2008.

A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore,
M. Roveri, and P. Traverso. Specifying and an-
alyzing early requirements in Tropos. Require-
ments Engineering, 9:132—-150, 2004.

D. Grofle, U. Kiihne, and R. Drechsler. Estimat-
ing functional coverage in bounded model check-
ing. In DATE, pages 1176-1181, 2007.

C. Heytmeyer, M. Archer, R. Bharawaj, and
R. Jeffords. Tools for constructing requirements
specifications: The SCR toolset at the age of
ten. International Journal of Computer Systems
Science and Engineering, 20(1):19-35, January
2005.

M. Y. Vardi H. Chockler, O. Kupferman. Cov-
erage metrics for temporal logic model checking.
Formal Methods in System Design, 28:189-212,
2006.

M. P. E. Heimdahl, M. W. Whalen, and J. M.
Thompson. NIMBUS: A tool for specification
centered development. In Proc. Requirements
Engineering Conference, page 349. IEEE Com-
puter Society, 2003.

B. Jobstmann and R. Bloem. Optimizations
for LTL synthesis. In 6th Conference on For-
mal Methods in Computer Aided Design (FM-
CAD’06), pages 117-124, 2006.

B. Jobstmann, S. Galler, M. Weiglhofer, and
R. Bloem. Anzu: A tool for property synthesis.
In Computer Aided Verification (CAV), 2007. To
appear in the proceedings of CAV’07.

S. Katz, O. Grumberg, and D. Geist. “Have
I written enough properties?”” — A method
of comparison between specification and im-
plementation. In Correct Hardware Design
and Verification Methods (CHARME’99), pages
280-297, Berlin, September 1999. Springer-
Verlag. LNCS 1703.

T. Junttila K. Heljanko and T. Latvala. Incre-
mental and complete bounded model checking
for full PLTL. In K. Etessami and S. K. Raja-
mani, editors, Seventeenth Conference on Com-
puter Aided Verification (CAV’05), pages 98—
111. Springer-Verlag, 2005. LNCS 3576.

O. Kupferman and M. Y. Vardi. Vacuity detec-
tion in temporal model checking. Software Tools
for Technology Transfer, 4:224-233, 2003.

O. Kupferman and M. Y. Vardi. Safraless de-
cision procedures. In Foundations of Computer
Science, pages 531-542, Pittsburgh, PA, Octo-
ber 2005.

N. Leveson, J. Reese, and M. Heimdahl. Spec-
TRM: A CAD system for digital automation,
1998.

S. Miyano and T. Hayashi. Alternating finite au-
tomata on w-words. Theoretical Computer Sci-
ence, 32:321-330, 1984.

A. Pnueli. The temporal logic of programs. In
IEEE Symposium on Foundations of Computer
Science, pages 4657, Providence, RI, 1977.

14 Authors: Formal Analysis of Requirements in Temporal Logics

[PPSO06] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthe-
sis of reactive(1l) designs. In E. Emerson and
K. Namjoshi, editors, VMCAI, volume 3855 of
LNCS, pages 364-380. Springer, 2006.

[PR89] A. Pnueli and R. Rosner. On the synthesis of a
reactive module. In 16th Annual ACM Sympo-
stum on Principles of Programming Languages,
pages 179-190, 1989.

[PSCT06] 1. Pill, S. Semprini, R. Cavada, M. Roveri,
R. Bloem, and A. Cimatti. Formal analysis of
hardware requirements. In DAC ’06: Proceedings
of the 43rd annual conference on design automa-
tion, pages 821-826, 2006.

[Saf88] S. Safra. On the complexity of omega-automata.
In FOCS, pages 319-327. IEEE, 1988.
[Sti95] C. Stirling. Local model checking games.

In Proc. Concurrency Theory, pages 1-11.
Springer-Verlag, 1995.

[TA99] S. Tripakis and K. Altisen. On-the-fly controller
synthesis for discrete and dense-time systems.
In J. Wing, J. Woodcock, and J. Davies, edi-
tors, World Congress on Formal Methods, vol-
ume 1708 of LNCS, pages 233-252. Springer,
1999.

[Var96] M. Y. Vardi. An automata-theoretic approach to
linear temporal logic. In Proceedings of the VIII
Banff Higher order workshop conference on Log-
ics for concurrency: structure versus automata,
pages 238-266, 1996.

[VW94] M. Vardi and P. Wolper. Reasoning about infi-
nite computations. Information and Computa-
tion, 115:1-37, 1994.

[WieO1] K. E. Wiegers. Inspecting requirements. Sticky-
Minds Weekly Colum, July 2001.

