RAT

Requirements Analysis Tool

Version 1.2

Authors
Roderick Bloem, Roberto Cavada,
Alessandro Cimatti, Ingo Pill,
Marco Roveri, Simone Semprini and
Andrei Tchaltsev

(©2005-2006 by FBK and Technical University of Graz

Notices
For information, contad®AT (rat @ bk. eu) .

This tool has been partially developed within the PROSY Dojpaan project, contract number
507219. [t t p: / / ww. prosyd. or g)

The information in this document is provided "as is”, and n@@ntee or warranty is given
that the information is fit for any particular purpose. Thernuhereof uses the information at
its sole risk and liability.

(© Copyright 2005-2006 FBK and Technical University of Gra#l rights reserved.

iie RAT — Requirements Analysis Tool

Contents

(0] (=] €S iii
Table Of FIQUIES . ..eie e iv
LISt Of TaIES oo ieeieii e e e e v
1 RAT USEIrS ManUAL.......cc.oeuiiiiiieiiiie e e e e e 1
1.1 RUNNING RAT Lo e et 1
1.2 Property Assurance in RAT ..ot mmmm e e e e eeneaeeaas 3
The Main WINAOW ... e e 3
Traces and their management.............covvvieeiveeein i, 6
AN EXAMPIE ..o 8
1.3 Property SImulation in RAT ... e e re e aeeaes 13
The Main WINAOW ... e e 13
The ANalysisS WINQOW..cuuuiiiiiiiiiii e 15
AN EXAMPIE ... 16
1.4 Property Realizability in RAT ...t 19
Realizability Problemcooiuiiiii e 20
Specifying a Realizability Problem..............ccceeiiiiiiiiinn 21
The Main WINAOW ... e e 22
2 RAT ArChItECIUNE it 25
2.1 Architecture and Implementation NOteScocevevevviinnnnnnns. 25
2.2 Architectural Patternsc.ooouiin e 26
The Model-View-Controller pattern............... o eeeeveeenenennnnnn. 27
The Observer Patternoc.vviiii e 27
2.3 SOftWare STTUCIUIE.......couii et i e e e e eeeas 28
TOOIS STUDS. .. 29
A vertical view over the Software Structure.........cccccceevvvennennnen.. 30
3 REIBIENCESt e 33

RAT — Requirements Analysis Tool Contents e iii

Table of Figures

Figure 1 -
Figure 2 -
Figure 3 -
Figure 4 -
Figure 5 -
Figure 6 -
Figure 7 -
Figure 8 -
Figure 9 -
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36

iv e Table of Figures

RAT- Main WiNdOW.covuiiriiiiiiiiiieee e 2
RAT- New project Wizard.oeommmeeneeeneenneenneenns 2
RAT- New project wizard, project data.ccecevevvvvvveee. 3
Property Assurance main Window.ccccovevevvinennnnnn. 4
Creating signals, requIremMents. o eeereenneennennnn

Creating possibilities and assertions. ..m.coieeeiieieien... 6
Verification panels.cocooviiiniini 6
An example of trace visualization.cowumeeieiiiiinnnnn. 7
An example of trace visualization.ooeiiinnennen.

Editing @ Category........ccvvuienin e v e e e ee e e e 9
Editing @ trace.........coooviiiiiiii e 9
Counter - initial specification.ccecccviiiiiiiiiiinnnne. 10
Counter - checking an assertion........cccccecevveeiieennnnnnn. 11

Counter - fixing the specification.........eommeeveiiivenennnn.. 12
Counter - checking a possibility.ccmmeeeieiiiiennnnn.. 12

Counter - traces of the SesSioN...........ccevvvvviviiiniiinennn. 13
Property Simulation Main Window.........cccccccccoveennen.n. 14
Property Simulation Evaluation Analysis Window......... 16
Create a project for Property Simulation. 17
Property Simulation Start Window........ccccceoevvivniinnenn.. 17
Witness for propert@(r — F(@)). ..c.ovvvveiiiiiiiiieiiiieis 18
Analysis of trace for proper@/(r — F(@))......cccooovvrvrnnnnn. 18
Ask forarequestonsignal r.ccoveeeeciiiiiiiiiiiieeenns 19
Witness with request for prope@yr — F(a)). 19
Witness for propert@(r — F(a))&& F(r). .ccovvvviiiinneennn. 20
Witness for propertfG(r — F(a)))&& (F(r)).....ccooeeereenn 20
Shaping the trace.ooviiiieeee 21

Witness for shaped trace request......coweemeeeeveenenennn. 21
Creating signals, requirements.o.eeeneenneinennen. 22
Specification of an environment signal in RAT............. 22

Specification of a system guarantee property il .RA..... 22

The Realizability window in RAT.oooiiiiiiiiiiiiieeens 23
The Realizability window in RATcoviiiviiiiiiieen 24
RAT- Software parts and collocationceeeeevuivvenen.... 26
RAT- Software StrucCturec.vieeeeeieieieieenn. 28
RAT- Hierarchy of main software entities..................... 30

RAT — Requirements Analysis Tool

List of Tables

RAT — Requirements Analysis Tool List of Tables e v

vi e List of Tables RAT — Requirements Analysis Tool

1 RAT Users Manual

The tool RAT fulfill the need for a proper technological suggo formal methods

in the setting of requirements analysis by providing itgsigdgth the integration of

three sets of functionalities that enact the Property Satiar, Property Assurance
and Property Realizability methodologies. In this secti@show how to interact

with RAT in order to accomplish the tasks related to theseethmethodologies.

All the examples in the following sections are written in Wexilog flavor of PSL
as from [8], the language supported by the verification esggvis and NUSMV.

1.1 Running RAT

RAT can be execute from the command line by the following camndh

rat - Launches the python interpreter to execRAT Command
program

rat [-h|--help] [-v|--version]

[-f <FILE.rat> | --project = <FILE rat>]
Command Options:
-h Prints the command usage.
-V Prints the program version.
-f <FILE rat> Loads the given project file

Figure 1 shows the start-up screen-shot of RAT when the $dalinched without
any project as argument.

The unit of interaction with RAT is th@roject i.e. a collection of formal pro-
perties and results of verification checks. The relevandhefole of a project,
as an object with a state that can be saved and reloaded isasldar as Prop-
erty Assurance and Property Realizability are regardeslugier that builds formal
specifications and inspect their quality, must have theipitigs to work in dif-
ferent sessions and of saving the results of the work peddrfrom session to
session. With Property Simulation, such a feature coulthdess relevant, but the
value of having the possibility of saving simulation sessidi.e. the properties
simulated and the connected traces) shows clearly if wé thidong time con-
suming work sessions and of the importance of having a qufdeence to their
results.

RAT — Requirements Analysis Tool RAT Users Manual e 1

X -+ A - o X

File Edit View Help

* New Open

RATv. 1.2

A tool for Requirements Analysis

Copyright (€) 2005 by ITC-irst
Copyright (c) 2005 by Graz University of Technology

@ Quick Start
To start a New Project click New
To load an Existing Project click Open

Figure 1: RAT- Main window.

Through the menéi | e or the commandlew in the tool bar it is possible to access
the wizard for the creation of new projects, shown in Figuree2ect the kind of
project, and specify the details of the project enteringdéu in the fields shown
in Figure 3.

b €] Create a New Project SUERRG

Specify the initial project type:
() Property Simulation

() Realizability

Property Assurance allows for ...

~ Note:
It will be possible to switch among the
project types at any time.

| 3¢ Cancel | | <& | | bﬁurward‘ | o Finish |

Figure 2: RAT- New project wizard.

As a result of the integration Property Simulation, Assaeaand Realizability
into RAT (rather than simply juxtaposing them), it is possito shift between
these three kinds of projects at any time, and to load priggerfor example, from
Property Assurance into Property Simulation or PropertglRability. A project

hence sums up all the history of a design development protessthe initial ex-

plorations of properties prototypes, to the definition oéadf requirements, from
the inspection of requirements adherence to the intendehimg; to the possi-
ble use of simulation to perform a fine grained inspection ropprties coming
from Property Assurance, and to checking the interplay detwcontrolled and
uncontrolled signals and their requirements with Reallizgb

Once a project has been created, the user can proceed dbeftstiSections 1.2,
1.3and 1.4.

2 e RAT Users Manual RAT — Requirements Analysis Tool

@il Create aNewProject _________________________[RNEEX

Other optional project information:

Project File: |Ccunter | IZI

Project Notes: |The specification of a counter
modulo 5.

| o Cancel H <] Back H&s || o Finish |

Figure 3: RAT- New project wizard, project data.

1.2 Property Assurance in RAT

RAT enacts the Property Assurance Methodology (see [2]@e2t2) by support-
ing the users in Property Assurance related tasks; RAT gesva proper frame-
work for managing set of properties, a user-friendly irdeef towards verification
engines, and a proper framework for managing the resultsagfePty Assurance
proof obligations. In this section we describe how to intenaith the tool by

following a typical use case, which encompasses the fotigwieps:

e editing of a project;
— editing of signals
— editing of requirements
— editing of possibilities
— editing of assertions

e verification

— activation of the checks
— management of traces

In the setting of Property Assuranderojectsare the entities that correspond to
the ensemble of a specification together with the result@indd by the connected
proof obligations. The building blocks of a specificatioriie Property Assurance
Methodology areequirementspossibilitiesandassertion all of which are proper-
ties formally expressed on a set of atomic symbols callgdals Following the
methodology, given a specification, some proof obligatieachto be discharged;
in [2] Section 2.2 it has been shown how these proof obligatican be mapped
onto SAT technology: the tool provides an interface towdhils technology and
communicates the results of the performed verification khdxy means of ex-
tended waveforms calledacesthat show the evolution of the values of signals in
possible models of the system under specification.

RAT — Requirements Analysis Tool RAT Users Manual e 3

The Main Window

RAT main window when in Property Assurance mode is shown guig 4. In
the upper part of the body of the window there are the tablethtomanagement
of signals and requirements; in the middle the are the takddglds for the man-
agement of possibilities and assertions (on the left), Aeccontrol panel for the
verification tasks (on the right); the bottom of the windowotupied by a text
box showing the output of the verification activity.

p& raT - counter Ry
File Edit View Help

4 D E M 1 &

" New Open | Traces “ | Assurance | Simulation Realizability
signals % & Requirements + B &
IName |Type |Kind |Nutes ‘ ‘.ﬂlName |Kmd |Property |Nme; ‘

Property Assurance

* B

Sat Technology |BDD Technology
Solver: | MinisaT |+ | [l inc [1SNF
— []sBMC

Depth: |30 0

Loop: | All Loops | ¥ |—

‘alName |5tatui |Prcperry |Notes

[» Checking outcomes

Figure 4: Property Assurance main window.

Adding and modifying elements of a project. The activities of adding, edit-
ing and removing items from the sets of signals, requiremqmssibilities and
assertions follow the same pattern regardless the classethe belong to. The
screen-shots in Figure 5 and 6 show the windows for creatimgnasignal, a new
requirement, a new possibility and a new assertion resgdgtiall of which are
accessible by clicking on the first one among the buttons ertdp right of the
table of the proper class.

Note that in Property Realizability signals are distinheid of being System or
Environment. Similarly, requirements are distinguishéd&ing Assumption or
Guarantee. For Property Assurance and Property Simultdtése distinctions are
of no importance and therefore ignored.

Once an item is created, it is shown in the table of its claskit@is possible to
modify or to delete it by clicking on the proper button on table of the class of
the item. A window similar to the one used for creation is ufdediting, and a
warning window will ask for the user’s confirmation befordadimg an item. Mul-
tiple selection is allowed r| keyboard button pressed when left-clicking with
the mouse on the desired items) and hence is possible to lopediting windows

4 e RAT Users Manual RAT — Requirements Analysis Tool

X -« [- - X

Create a new signal

Name: iinc |

Kind: @ Environment
() System

Type: (@ Boolean
() Other:

[Editor

Notes: ;‘fhe input signal for
imcremem:ing the value of the
\counter

‘Igancel” o oK |

X -+ I - O X

Create a new requirement

Name: |R1

Property: |always (forall Min {-6:5}
((v=M && inc) —> next (v = (M + 1)))}

= Indent
Kind: (@ Guarantee
() Assumption
Notes: leach inc is immediately
ifoliowed by
\an increment of v
| o cancel ‘ ‘ o oK |

Figure 5: Creating signals, requirements.

of several items at one time, or to delete more than one itemeatime. Multi-row
editing and parenthesis highlighting are provided to das@put of properties and
to make more effective their visualization. Notice thalttz tasks that can be per-
formed on signals, requirements, possibilities, assgrtiaces and categories are
accessible also through pop-up menus that shows when theigiseclick with
the mouse on an item; the pop-up menus offer also selectailitiés like “select
all”, “deselect all” and “invert selection”.

Since, as pointed out in [2] Section 2, it may be of great usgnolate a property
when the results of a Property Assurance check are not ofaessprehension,
the user is provided with the possibility of loading an itehatt belongs to re-
quirements, possibilities or assertions into Propertyubation mode; this can be
accomplished by selecting the desired items and clickindpetast one among the
four buttons on the top right corner of the proper table, osélecting the voice
Load into Sinulation from the pop-up menu accessible by right clicking on
the selected items. The logical conjunction of the seleittads is copied in the
Property text box in the Property Simulation mode (See Section 1.3).

Verification ~ The verification tabbed panel, on the middle right of the wind
provides the user with control on the execution of the vexdfon engine used to

RAT — Requirements Analysis Tool RAT Users Manual o5

Create a new possibility

Name: |F'1 ‘

Property: |always (forall N in {-5:5}:
(fv=N) —> eventually! (v 1= N))}

£ Indent

Notes: Can it be the case the counter changes value

‘ 8 Cancel | | o oK ‘
X =
Create a new assertion
Name: IAl |
Property: |always (forall M in {-5:5}:
(v = M) == ((v=M) until (inc || dec))))
£ Indent
Notes: does not change if
there are no inc and dec
‘ 8 Cancel ‘ | o oK |

Figure 6: Creating possibilities and assertions.

perform Property Assurance related checks. The two talbsyrsin Figure 7, al-
low to chose among SAT-based BMC techniques or BDD-based édliniques,
and to set the respective options. As far as SAT-based BM&y&rded, it is pos-
sible to choose which SAT solver to use, whether incremdatiiniques should
be used, the depth of the BMC problem generated, and the faaltiee loop back.
With regard to BDD-based MC, the user can define the partitiethod, whether
using Cone of Influence techniques, and which kind of dynasocdering should
be used, if any. For more details on the meaning of theseraptibe user can refer
to the user manual of BISMV [5].

[] Consistency @ Check [] Consistency

Sat Technology ‘BDD Technology | Sat Ted|nologv| EDD Technology
Solver: | MiniSAT ‘v [Jinc [SNF Partition:

[sBMC =
Depth: s 0 [[] Cone of Influence

["] Dynamic Reordering
Loop: | All Loops \v H ‘ | |

Figure 7: Verification panels.

6 e RAT Users Manual RAT — Requirements Analysis Tool

Traces and their management

The results of verification checks are shown as traces, wdmetshown as new
tabs beside th@ut put tab as depicted in Figure 8.

b &%l RAT - 55 TG
File Edit Wiew Help
B d @ 2 ©
" New Open Save | Traces Assurance | Simulation Realizahility
Signals % ¥ Requirements ¢ 8 2
JName |Tvpe |Kind |the5 ‘ |a |Name |Klnd |P‘ru|::er’wr |Nute5 ‘
| a boolean 5 i always (
I <0 G
b boolean S | {a;blnext c))
o boolear S ri G eventually! ((a && Ib) && next b)

Property Assurance

Possibilities Assertions.) check [] Consistency
+ B2

&1 |Name |status |Property |Notes | |Sat TEChﬂ01OQY|EBDT Olﬂgy|
' [] semMC

Depth: |30

Loop: | All Loops | ¥ I!

= Checking outcomes

Name |5tep1 |vstep2 |5ten3 Name: Trace_6
a [1 Dep: 10, rl, poss0
b I | Cat! New
o |
| QTrash

Output | Trace _6

Figure 8: An example of trace visualization.

Each trace has a name and is connected to the requirementheapadssibili-
ties/assertions it has been generated from, i.e. thosevitatselected to perform
the check of which the trace is the result. These data allawatk the dependen-
cies among the traces and the other elements of the prajeex&dmple, knowing
which requirements a trace depends on allows the systengnalsit as out of
date or no longer meaningful if some changes have been petbto one of the
requirements the trace depends on.

In Figure 8, the trace shown is composed by an initial stdpv@d by an infinite
repetition of the second step, i.e. a loop. Loops are signbjea little black
arrow close to the name of the step they start from. Coloregssthanges to help
depicting the finite prefix and the infinite loop in traceshtigray for the former,
dark gray for the latter.

To ease their management and to reflect the typical use c&emdrty Assurance,
traces are organized in differenategoriesamong which the following system
categories are provided:

New. the category where traces generated in the current sessostaed by
default;

RAT — Requirements Analysis Tool RAT Users Manual e 7

Def aul t : the category where up to date traces that have been generates
vious sessions are stored;

Qut of dat e: the category where out of date traces are stored (a traceé @ ou
date when some element in its dependencies have been deletedlified);

Tr ash: the category of traces the user scheduled for deletion.

A simple way of managing traces with respect to categoriggasided by the
buttonsTrash andMve on the right of each trace in the main window, as shown
in Figure 8.

Clicking on the buttorTr aces in the tool-bar, it is possible to access the window
of thetrace manageras shown in Figure 9, which allows the user to manage traces
by editing the associated data, moving them from a categoanother category,
deleting them, creating new categories and editing theataiaected to categories.

X - Ry - T %
Categories & > @ Selected Traces

| New This is the category of those traces that have been just created

=7 Trace_6
New (one trace) o e T e r B
Nates: (This trace has no notes)
Dependencies are:r0, rl, poss0 7
History:
[Default (empty) 00: Added to category 'New'

This Is the default

category fo

Show | Category

st cr

IName |Step1 |vstep2 |5[ep3

O ?ul of Date (empty) 2 ——1
o o
S ———
Contains the traces that
have been deleted
| |
Traces £ @ Trash contains the rraces that have been deleted
[Trace_0
ShowlName |Categarv l I
Name |Ste 1 |VSte 2 |Ste 3
Trace_6 New 1 i £ B
Trace_0 Trash | 3 1
Trace_1 Trash b

O Trace_3 Trash
[Trace_4 Trash

[
| Trace_1
B Trace_5 Trash b

[Trace_2 Trash | €

| IName |Stepl |VStep2 |Step3
| = %
b
L

Figure 9: An example of trace visualization.

At the top left corner of the trace manager window the listategories is shown,
where each category has a name aldsxri ption; it is possible to select more
than one category and, on selection, the contained traeashiawn on the right part
of the window grouped under the name of the category theynbdio. In the left
bottom corner of the window there is the list of the names eftthces contained
in the selected categories, by selecting or de-selectingesat is possible to show
or hide traces in the right part. As shown, each trace is {iétogether with its
complete data that comprise a brief description, the notesred by the user, the
list of dependences and the history (when the trace wasatedeetc.). Categories
and traces tables on the left part of the window, allow thesuseedit, delete or
add items, in Figure 10 and Figure 11 the editing dialog foegaries and traces
are shown.

8 e RAT Users Manual RAT — Requirements Analysis Tool

b€ vew [EEBS
Add a new Category

Name: ! New |

s is a category
those traces that have
n just created

Figure 10: Editing a category.

b &) Trace 6 e

Edit Trace Information

General

Name: “Trace_s Category: | New v

Notes

Other information
|Description
This trace contains 3 steps, and has one loocp at step 2.

[2]

Dependencies
ro, rl, possO

Originating formula
L(Calways ({a:b}(next c))) & (eventuallyl ((a && Llb) && ||

Creation information
Created by 'MusSMV' on Thu Dec 14 16:59:46 2006
Checking command was: "check_pslspec -b -k 30 -1 ="

History
00: Added to category "New'

<[

<[] [

Figure 11: Editing a trace.

An Example

In this section we work out a simple but meaningful exampég ttovers the most
relevant Property Assurance features of RAT, and link togyein a cohesive view
the usage information given in the previous section.

The example we are going to tackle is the specification of antbed counter (an
instantiation of what described in [2] Section 2.2); a fisivié specification could
be the one shown in Figure 12.

The specification is based on the following signals:

i nc: the signal that models the issuing of increment operations
dec: the signal that models the issuing of decrement operations

v: the signal (integer valued) that models the value of the @yun

this signals are shown in tt8 gnal s table together with their type and notes.

TheRequi renent s table collects three requirements that constitute aralrspiec-
ification of the functional behavior of the counter, and af tissumptions on the
environment

R1: prescribes that any increment operation is immediatelvied by a unit
increment in the value of the counter

RAT — Requirements Analysis Tool RAT Users Manual e 9

x#l RAT - DemoPropAssurance o [E)

File Edit View Help

B Q@ e &

"~ New Open Save | Traces | Assurance | Simulation Realizability
Signals % - [Requirements + B8 2
IName |Tvpe |Kmd |Note; | ‘ﬁ |Name |Klnd |Pmpenv |Nmes

The input signal for
inc boolean E incrementing the value R1 G
of the counter

each inc is immediately
™+ 1) followed by
an increment of v
each dec is immediately
" followed by
a decrement of v

always (forall M in {-6:5}
((v=M && inc) —> next (v =

The input signal far

always (forall M in {-5:6}:

dec boolean E decrementing the [¥Ir2 G (lv=M && dec) —> next (v = (M- 1)

value of the counter
v -6.6] The value of the counter R3 A

inc and dec never occur
simultaneausly

never (inc && dec)

[e] z I [] [||

* 8z

Property Assurance

& |Name |Status |Prcpertv Notes Sat Technology |BDD Technology

Solver: | MinisaT | | Clinc []SNF

I semc
Depth: ‘30
| |Loop: | All Loops |+ l 7}:;

il [I3]
<7 Checking outcomes
F> Staer 1.2 <- 7
Destroying a SAT solver instance 'MiniSat'
Done
Quitting the BMC package... [~
il z

Output

Figure 12: Counter - initial specification.

R2: prescribes that any decrement operation is immediatelgweld by a unit
decrement in the value of the counter

R3: states that increment and decrement operations must nat setaultane-
ously (this is a constraint on the environment)

Once this initial specification is entered by the user, itdsgible to proceed and
check it for consistency, i.e. checking that the requiretsi@re not mutually con-
tradictory. This can be achieved by selecting all the regoents, by ticking the
check boxConsi st ency check, and by clicking on th&heck button in the con-
trol panel at the top. Figure 12 shown the result of this cheglositive: the output
from the verification engine, shown in the talt put , reports that the run of the
engine has completed successfully and no warning messaseiéxl by RAT. As
shown in the control panel, this check has been performedyBAT technology
with a depth of the problem equal to 30, and checking for adisfile loop-backs.

Now that we have an initial consistent specification, we ¢art analyzing it and
check if it describes exactly the behavior we have in mind.

The first step can be that of checking that the value of our tevus always coher-
ent with the inputs received. In particular, we want to beeghat if no operation
is issued, the value of the counter does not change, whatevemlue is; this is
the meaning of assertiokl shown in theAsserti ons table in Figure 13.

OnceAl has been entered, we can check it against all the requirerapdtget the
result shown in Figure 13: the assertion is signalefaied by a red bullet next to
its name in theAsserti ons table, and a trace showing a counterexampl<cs

created and shown at the bottom of the main window. Note teatranary of the
information related to the trace is provided close to thedtritself. By examining

10 e RAT Users Manual RAT — Requirements Analysis Tool

x#l RAT - DemoPropAssurance = B XK
File Edit View Help
: = ;[&
"~ New Open Save | Traces “|Assurance | Simulation Realizability
Signals % {§ Requirements L
IName |Tvpe |Klnd |Nc[e§ ‘ Iﬁ |Name |>(1nd |Prcper‘rv |Nates ‘
The input signal for each inc is immediately
. always (forall M in {-6:5}:
7
inc boolean E incrementing the value | R1 G ((v=M && inc) —> next (v = (M + 1)) followed by
of the counter an increment of v
The input signal for 3 each dec is immediately
i always (forall M in {-5:6}
7
dec boolean E decrementing the R2 G ((v=M && dec) -> next (v = (M — 19))) followed by
value of the counter a decrement of v
v -6.6 § The value of the counter R3 A never (Inc && dac) inc and dec never occur
simultaneausly
Property Assurance
Possibilities Assertions
4 @ Check [] Consistency
+ 2 @2
o |Name |Status |Property Notes Sat Technulugy‘ﬂDD'T chnal ‘
" A ' 0 does no g solver: | MinisaT |+ | [1Ine [1SNF (2]
d e a] d de | £ —'] SBMC el
Nenth: |30 23) 2
=7 Checking outcomes
Name |Stepl |VS[ep2 |5te::3 i Mame: Trace_1
inc Dep: R1,R2 R3, A1
I - v
v —2 4 % i
'
Output| Trace_1

Figure 13: Counter - checking an assertion.

the trace, we notice that the counterexample shown hastaal siepin which the

value of the counter is -2 and no operation is issued, and@ndestep in which
the value of the counter is changed to 4. Note that the la®t stactually the first
and only one of an infinite loop, as signaled by the little klacrow close to the
name of the step in the header of the trace. A review of theirements reveals
that actually nothing is said about the evolution of sign&hen no operation is
issued, and this leads us to the definition of a new requirésribat fills this hole

R4: prescribes that if no operation is issued the value of thetesuemains un-
changed

Figure 14 illustrates the new state of the specification &od/s that ifR4 is added,
the check forAl passes, as signaled by the green bullet inAdserti ons table.
Note that in this case the check has been performed using BEihblogy with
the Si ft dynamic reordering method. In this case no trace is showausecno
counterexamples has been found.

Once the check foAl is passed, we gained more confidence on how the counter
reacts to the stimuli of the environment. Now we can check tia system ex-
hibits desired behaviors, i.e. that it is possible that gbing happens, even if not
mandatory. For example, we may want to check that it is dgttia case that the
value of the counter may change, this means looking for aasiem which the
system evolves reacting to the stimuli of the environmersich a way to modify

the initial value of the counter. This check can be perforfagthe possibilityP1
shown in Figure 15.

The possibility is signaled gsassedn thePossi biliti es table, and a trace cor-
responding to a witness of the desired system behavior isrstbe trace exhibits

RAT — Requirements Analysis Tool RAT Users Manual e 11

X-N RAT - DemoPropAssurance ¢

File Edit

% D Q

7 New Open Save

View Help

o X

2 2

Traces | Assurance | Simulation Realizability
signals % = % Requirements + 8 32
Name |Tvpe |K1nd |Notes || a |Na.mE |K§nd |Prouenv |Note§ ol

inc boolean E

dec boolean E

v -8.6 5§

The input signal for
incrementing the value
of the counter

The input signal for
decrementing the

value of the counter
The value of the counter

always (forall M in {-5:6}:

Rz @

R3 A never (inc && dec)

always (forall M in {-6:6}
(lv=M && linc && Idec]

(fv=M && dec) -> next (v = (M - 1))))

each dec is immediately
followed by

a decrement of v

inc and dec never oceur
simultaneausly g

v does not change if no
inc and dec commands

(s) are d

Property Assurance

Possibilities

a Name |Status |Property

Assertions

Sat‘l‘ed'mninqr BDD Technology |
g Partition: Threshold |

| [T Cona af inflisnca

Notes

BED|

~ Checking outcomes

....done

[Flattening the generated tableau
Creating LTL tableau variables...
- specification (i{(always ((forall M in {-6:5} : (iv = M & inc) —-> next (v = M + 1)) }) & always ((forall M in {-5:6} : (v = M & de
[There are no traces currently available.

Quitting the BMC package...

Done

done

<[l
Output | T

B
i

Figure 14: Counter - fixing the specification.

X~W RAT - DemoPropAssurance .0 K

Eile Edit

Bed

View Help

B

New Open Save | Traces G Ai,‘il-ll’ﬂwe Simulation Realizability
signals ¢ - 5 Requirements + B8 2

Name |Tvpe |K1nd |Nmes a |Name |K§nd |Pmper[v |Note; o

The input signal for R2 c mgf:.,,[:’f;enﬁ,‘l_;if(\, — M- 1) followed by

inc boolean E incrementing the value = = a decrement of v
of the counter
inc and dec never occur
3 i
The input signal for b A never (e && dec) simultaneausly

i

dec boolean E decrementing the

value of the counter

always (forall M in {-6:6}
((v=M && linc && Idec]

v does not change if no
inc and dec commands

-6.. are issued

6 S The value of the counter

Property Assurance

Possibilities ssertio
e @ Check [Consistency
*
& |Name |Status |Property Notes Sat Technology | BDD Technuiogy|
P = Partition: Threshold [»

| [[] Cone of Influence

= Checking outcomes

Name |vStep1 |5tepz |Stepi |Step4 |Step5 Name: Trace_4

Dep: R1R2,R3, R4, P1
Cat: New

inc

OHWIITEW—I- ‘Tﬂﬁﬂ_z ‘T_u('n__a_ ‘ Trace_4 |

Figure 15: Counter - checking a possibility.

12 ¢ RAT Users Manual RAT — Requirements Analysis Tool

a five step loop in which initially is 1 and two consecutivenc operations are
issued (the value of changes accordingly) and then tdec operations are issued
making the value of going back to 1 in the fifth step.

The result of a work session is a specification, a set of pititisd, a set of as-
sertions and a set of traces corresponding to the resulteafhecks performed.
Figure 16 shows the trace manager window with the tracesrgtukeduring this
session (actually other traces are shown that we do notideddsut that have been
generated within this section).

X -+ T | - 11 %
Calegaties & B Selected Traces

[*]

New Thisis the category of those traces that have been just created

Show | Category
[» Trace_1

New (5 traces)

Name |Stepl | + Step2 |Step3

dec |

Default (empty)
This Is the defaulr v =2 4 4 2
category for traces

oOut of Date (emp

he hose

[» Trace_3
Name |VStep1 |5tepz

inc

dec
Contains the traces that v ¥ -6 6

have been defeted

> Trace_4
Name |V5teu1 |Stepz |Ste;33 |Step4 |5teu5
z inc 1 I
Traces] dec _ 1
v T X 2 3 2 1
|Shuw|Na.me |Categurv | 4
| Trace_1 New | b Trace_s
Name | v sien1 [step2
Trace_3 Mew | inc
Trace_4 New ‘ dec
Trace_5 New | v -6 =5

|

Trace_0 Trash

Default This is the default categary for traces

Out of Date contains the traces whose dependencies might be no lonaer consistent

Trash contains the traces that have been deleted
[» Trace_o

[l

Figure 16: Counter - traces of the session.

1.3 Property Simulation in RAT

Note: Property Simulation is not supported within theNrAssProject. How-
ever, for completeness of this methodological section éntgpSimulation is de-
scribed here for the sake of readability.

This section illustrates the RAT Property Simulation featu Some general GUI
features will be introduced, followed by explanations of timain and analysis
windows and an example scenario for a simple standard fyoper

RAT — Requirements Analysis Tool RAT Users Manual e 13

The Main Window

When enacting Property Simulation in RAT you will see the Ri@y@in window
to change to Property Simulation mode as illustrated inleid. Please note that
the user is able to switch the mode at any time using the swibclrols in the
upper right of the main window.

S ¢

b €21 RAT - Unnamed Project
Eile Edit View Help

B =] < & &,
Open | Traces * Assurance | Simulation | Realizability

Signals enits | Possibilities | Asser
= i]

Property Simulati

Signal Stepl |Step2 S[pi[:

iEvamamn |5t epl [Step2 |Step3

|7 Gt —> (@)
F(r) -> (F(a))

i[

e
7 Fla)

il

Witness | ‘ Counterexample Status/Result; Witness An, \VI

Figure 17: Property Simulation Main Window.

In the figure you see the three main sections of the Propentyl&tion interface.
On the upper left you can see a multi-row text entry window rghgu can enter
your property. The various lines are combined to a singl@gnty, thus you may
split your property to several lines for a better overview.

The middle section of the Property Simulation window cassef two widgets

showing waveforms. The upper one illustrates the derivedngte behavior using
waveforms. The different waveforms illustrate the sigradlies for every time step
in the trace. The whole trace is determined by the finite gaprafix completed by
an infinite repetition of the infinite parts. The backgroumibc indicates whether
the value is in the finite or infinite part of the trace. Lightegrcorresponds to
the finite part and dark grey to the infinite part. You may de&esingle signal

to highlight its waveform, there is no further impact of sugetselection. The
trace/signal view offers the possibility to request feasufor the next trace. A
click on the right button of your mouse on a step of the trac&lpces a pop-up
window offering the following requests:

e Insert timestep: Another time-step is entered just before the one you have
clicked on. The default value is ‘Do not care’, which mearet tyou don'’t
have any preference for the value in the next trace.

e Remove timestep:A given time-step is removed in the next trace.
e Fix value to False:In the next trace this value shall be false.
e Fix value to True: In the next trace this value shall be true.

e Set to ‘Do not care’: You do not care about the signals value at this time
step in the next trace. This option can be used to unset extjuaues.

14 ¢ RAT Users Manual RAT — Requirements Analysis Tool

When you establish requests you will notice that the colotheftrace for this
signal and time step changes to red. Red parts in the travetbhbthese parts are
requested to be fixed to the current values for the next tregeest. You'll also
notice that the status Value at the bottom changes to “Ceddaind the waveform
color of the formula evaluation changes to black. This melaaisthe tree-view for
the Formula/Property evaluation does not correspond ttrélse anymore.

The tree-view for the Formula/Property evaluation bendaghTrace/Signal view
is not editable, so you cannot shape the waveform here.u#itiites and corre-
lates the single parts of the property to the trace. For dawdrstep of the trace
the property and all its sub-formulae are evaluated to trualee, visualized by
waveforms organized in a tree. The tree structure is defigad the property to
illustrate the dependencies between the parts of the fyopése the tree-view to
make sure that the formula has been parsed the way you edpdg#dating the
waveforms to each other shows how the different parts of tbeguty interact with
each other interpreted on the trace.

The last part of the Property Simulation main window is thetodl and status bar
located at the bottom. It includes the following contents:

e Witness Button: Pressing this button you can ask RAT to derive a trace
living up to the property and the feature requests you mag ktated.

e Counterexample Button: With a click on this button you can ask RAT to
provide a trace contradicting the property or possibleufeatequests.

e Status: At this location you can always see what RAT is up to when daing
computation and the status of the trace and evaluation whenkxamples
areWitness, Counterexampl|s Error,

e Analysis Button A click on this button raises another second analysis win-
dow offering coverage information and controls as disadigs¢he very next
section.

The Analysis Window

The analysis window completes the information and contwbtbe main window.
For each sub-formula of the property the window containsecage statistics and
offers controls to request for the next trace that this paoukl evaluate globally
or finally to true or false.

The coverage statistics tell how often a properties pafuates to true and false,
and how often this evaluation change during the evaluatfotine trace. These
statistics are derived for the finite and infinite parts oftilage, complemented by
numbers for the entire trace including possible changekeainterconnection of
the trace and the transition from the last state to the fiase sif the infinite part.

The graphical concept uses a tree-view for organizatiorhefvisualization and
offers a ‘close’ button at the bottom to close the window. Triee-view shows the
coverage statistics for each part of the property and thealsrio request features.

RAT — Requirements Analysis Tool RAT Users Manual e 15

The first column contains the name of the part, followed by m@olumns to illus-
trate the coverage information. For each part there arerasduabeled0’,'1’, and
‘C’, corresponding to the numbers for fals@'), true (1') and evaluation result
changesC’). The three sections for the finite, infinite parts, and thelelrace
are distinguished by the used background colors. The secfar the finite and
infinite parts use the same colors used for the waveformis; digey and dark grey.
The section for the whole trace uses a very dark grey.

Additional four columns offer the option to request featui@ the next trace. You
can request a sub-formula to evaluate a property eventt@alisue (F(==1)"),
globally to true (G(==1)"), finally to false (F(==0)"), or (G(==0)"). A green
zero for a request indicates that there is no request foreRketrace, whereas a
red one indicates a desired request. Pressing the righterimiton on a value
produces a pop-up window enabling to set or unset a request.

Considering the tree structure and the coverage informai@m be of great help
in exploring the behavior of a property. Considering thenepke of a property
requiring an request to be acknowledged the coverage iafitsmmay show that
there is no request happening (columns labeled ‘1’ show va&les for request)
for a vacuous trace. So by setting the request to be eventuad you can ask for
a more interesting trace for example. When a part of the ptppleesn’t evaluate
to a specific value at any time you may ask for an illustratibwlwat happens if it
does by seating the corresponding request.

b €51 Evaluation Analysis .

Formula coverage -> request features

Signal/Formula

¥ G(r) -= (Fa)) 20030
= () -> (Fa)
r
~ Fl(a)

Close

Figure 18: Property Simulation Evaluation Analysis Window

An example

This section illustrates RAT Property Simulation functtity with a simple ex-
ample. For this example scenario we will consider the infdrproperty that a
request should be eventually acknowledged .

First we have to start a new project. This is done by callingaral clicking the
“New” button at the top of the window. As for this example wesidke to do Prop-
erty Simulation only we can skip the step of entering progithils at this stage;
Property Simulation extracts the information it needs fecomputations directly

16 ¢ RAT Users Manual RAT — Requirements Analysis Tool

from the property itself. With a click on the finish button @bre 19) we are pre-
sented with the main window of Property Simulation (Figu®.2Please note
that if you would like to perform Property Simulation in anging requirements
engineering project for a device under construction, yau saitch to Property
Simulation by clicking the control button at the top righttbé main window.

P&l Create aNewProject [RNaBY
Specify the initial project type:

() Property Assurance

() Realizabhility

Property Simulation allows for ...

Note:
It will be possible to switch among the
project types at any time.

| # cancel | | E | | Dﬁorward| | o Finish |

Figure 19: Create a project for Property Simulation.

b &1 RAT - Unnamed Project N EL

File Edit View Help

B il N - Y
Open | Traces Assurance | Simulation | Realizability

Signals ire Possibilities | Assertians

Property | sl
e |Tvue |and |Nu

n ilities | Assertio
| Narm tes ‘

Property Simulation
signals

|3

[2] [¢]

|Evaluation

[»

Witness ‘ ‘ Counterexample status/Result: Initialized Analysis

4]

Figure 20: Property Simulation Start Window.

Our first guess on PSL syntax for our informal propertgis — F(a)). G (“Glob-
ally”) is the short form of the PSL operator “always”, and E{entually, Finally”)
is the short form of the “eventually!” operator. We enterttheoperty into the en-
try widget of the Property Simulation main window and prées"Witness” button
to ask for an example trace fulfilling and illustrating theperty. We're presented
with the trace illustrated in Figure 21.

The trace is vacuous because there is no request, but sdtuade are acknowl-
edges. We see that the property does neither need a requegtdgen, nor that
there is a request for an acknowledge to occur. Althoughxheele is very sim-
ple and we can obtain that information by judging and intetipg the waveforms

RAT — Requirements Analysis Tool RAT Users Manual e 17

b €71 RAT - Unnamed Project AEl
File Edit View Help

Open | Traces Assurance | Simulation | Realizability

Property Signals i Possibilities | Assertions
Gir->F(a)

NarneI |Tvue |Kmd |Nates

Property Si

Signals |S(ep1 step2 [step3

r

a &
|Evaluation |Sxen1 step2 |step3 |1*
¥ Glr) > (F@)

¥ (r) > (F@) =

r
¥ Fa
a

=
<] % [*]

Witness | ‘ Counterexample Status/Result: Witness Analysis

Figure 21: Witness for proper@(r — F(a)).

X—N Evaluation Analysis - 0O X
Formula coverage -> request features

Signal fFormula
T Gi(r) -> (F(a)))
= (r) -> (F(a)

SO

r
~ Fla)

Close

Figure 22: Analysis of trace for proper§(r — F(a)).

we now press the analysis button to show the coverage infmmalustrated by
Figure 22.

A check of the analysis reassures our preliminary conahssido gain a more in-
teresting trace we request a request to eventually happlusasited in Figure 23.
We keep the analysis window opened and ask for a new witnegsdsging the
corresponding button in the main window.

We are presented with the trace illustrated in Figure 24. Asave satisfied with
the trace and want a request to happen for future examplebange our property
to G(r — F(a))&& F(r). By asking for a new witness we want to recheck this
change.Please note that the requests are reset for eveey @ you might not
include a forgotten request forever resulting in the misstedresting behaviors
during property exploration.

The derived trace illustrated in Figure 25 however, unvbigg we have got some-
thing wrong, as the tree structure does not fit our intenti®y.the investigation
of the tree structure we uncover that we have forgotten twoKats. We have to
put theG() part of the property into brackets, otherwise tbgical andbinds the
F(r) to the implication part and not to the globally part. We additdnal brack-

18 ¢ RAT Users Manual RAT — Requirements Analysis Tool

P&l Evaluation Analysis ______________________________[EEERS
Formula coverage -> request features
Signal/Formula [o]t]c]o]t]c]or]c[ren [[Feo) Jaor |14]
= G((r) -> (F(a))) 010 0 0 0 0
¥ () -> (F(a)) 010 0 0 0 y
r Loo 0 0 0 ’
¥ Fla) 010 0 0 0
a Loo 0 0 0 5]
[«] s [*]
Figure 23: Ask for a request on signal .
b€l RAT - Unnamed Project “ B
File Edit View Help
B & m . &
Open | Traces Assurance | Simulation | Realizability

Property Signals | Requin Possibifities | Assertions

Gir->F @) Name‘ [Tvpe [Kind [notes

Property Simulation

signals |Stea1 |Stepz |sten3 Step# |Steps
r
a 7

|Step1|5tep2 |Slep3 Step4 [StepS

|Evaluation
¥ G -> (F@))
(1) -> (F(a)
r
¥ Fla)
a

D]

Witness ‘ ‘ Counterexample Status/Result: Withess Analysis

7

Figure 24: Witness with request for propefdyr — F(a)).

ets to the property to gaifG(r — F(a)))&& (F(r)). By asking for a new witness
we recheck the property and are satisfied with the preserded and evaluation

(Figure 26).

Now we want to check if a single of the two acknowledges can®to the prop-
erty. Again this might be obvious for our example, but it migbt be obvious for
a more complex one. Thus we shape the trace by editing thefovaveWe fix the
values of signat to the values of the trace and sigreto true for time-step one
and false for the remaining time-steps (Figure 27).

Asking for a new witness produces a trace illustrating thaitrequests are satisfi-
able (Figure 28).

We have used all elements of the Property Simulation interfo far, and now it
is up to you to explore the property and the potential of Prigp8imulation on
your own. To give you some initial direction we would like toggiest to enhance
the property to allow an acknowledge only on a request, oimi the length of
an acknowledge to one time-step.

RAT — Requirements Analysis Tool RAT Users Manual e 19

b €71 RAT - Unnamed Project AEl
File Edit View Help

Brpa @ ¢ B q
Open Traces Assurance | Simulation | Realizahility
Property
gg;&”s)) Name |Type |Kind |Notes
Property Si i
Signals |itep1 |StE;=2 |Step3 Step4 |Step’
r
a o
|Evaluation |Stepl |Sten2 |steni step4 [steps |*
TG -> (F@)) && (F())
() -> (F(a)) && (F(r))
) > (F@)
r
~ Fa)
| Zs r
Witness | ‘ Counterexample Status/Result: Witness

Figure 25: Witness for proper@(r — F(a))&& F(r).

b €71 RAT - Unnamed Project AEl
File Edit View Help
Brpa @ ¢ B q
Open Traces Assurance | Simulation | Realizability
Property
E;&(r(;(:”; @b Name |Type |Kind |Notes
Property Si

Signals |§tepl |StE;=2 |Stepi Step4 [Steps
r
a Z

|S(eDl |Sten2 |steni Step4 |Step5

|Evaluation
¥ (GU) -> (F@N)) && (Fr))
¥ Gl -> F@)
¥ -> (F@)
r

~ Fa)
<] Z *
Witness | ‘ Counterexample Status/Result: Witness

Figure 26: Witness for propertyG(r — F(a)))&& (F(r)).

1.4 Property Realizability in RAT
Note: Like for Property Simulation, Realizability is notpported within the
CompassProject. However, for completeness of this methodologieation Re-
alizability is described here for the sake of readability.

This section illustrates the RAT Property Realizabilitatigres.

For using Realizability feature the enhanced version oSMV [4] is required.
See Sectior?? for detalils.

20 e RAT Users Manual RAT — Requirements Analysis Tool

b, &1 RAT - Unnamed Project “ 0%
File Edit View Help

BodEd @ 1@@3
Traces Assurance | Simulation | Realizability

Open

Property]
G —>F @)
&& (F(1) Name [Type [Kind [Notes

Property Simulation

signals |Steal |stenz |Steb] Step4 |Steps
r
a “

|Evaluation |Stepl |ste;=z |S(ep3 Step4 [StepS
7 (Gl(r) -> (Fla))) && (F(r)
¥ GUn -> F@y)
) > F@)
r

* Fa)
a
¥ F)
.
gl D
Witness ‘ ‘ Counterexample Status/Result: Qutdated
7
Figure 27: Shaping the trace.
p'&=] RAT - Unnamed Project B
Flle Edit View Help
5 Open Traces ~ Assurance | Simulation | Realizability
Property Signals iirements | Possibilities | Assertions

(G (r->F @)

&& (F() Naire [Tvme [iind [notes

Property Simulation

Signals |Steal |Ske;=2 |S(ep] Step4 |StepS
r
a &

|smp1 |stepz |S(ep3 Step4 |StepS

VUG > (F(@))) && (Fir)
¥ G -> (Flan)
7 (r) -> (F@)
r

< F(a)
a
7 F(r)
:
gl 7]
Witness. ‘ ‘ Counterexample Status/Result: Witness

7

Figure 28: Witness for shaped trace request.

Realizability Problem

Informally, Property Realizability problem can be desedlas follows. All signals
are divided into two disjoint sets — uncontrolled (enviremt) signals and the
controlled (system) signals. Similarly, every requireinieelongs to one of two
sets — the assumptions and the guarantees. At every steplay atpfirst the
environment variables are set to some unknown-beforehalngésand then system
decides values for its variables. Assuming that the assarmgphold the task of
the system is to satisfy the guarantees. If the system istatide that for every
possible behavior of the environment the specification ialiRable. Otherwise
the specification is Unrealizable. For the detailed definitof the Realizability
problem see [4].

RAT — Requirements Analysis Tool RAT Users Manual e 21

Specifying a Realizability Problem

As was told in Section 1.2 the distinction of signals in Sgstnd Environment as
well as the distinction of requirements in Assumption an@futee is important
only for Property Realizability. Thus now, a user have tacefpeexplicitly whether

a signal is an environment signal or a system signal. For plarigure 30 shows
the wizard to specify an environment signalc of type boolean. Similarly, a

X -« M - <

Create a new signal

Name: iinc |

Kind: @) Environment
() System

Type: (@ Boolean
(") Other:

|» Editor

Notes: [The input signal for
iincrememing the value of the
‘counter

| 38 Cancel || o oK |

Figure 29: Creating signals, requirements.

Figure 30: Specification of an environment signal in RAT.

requirement describes an assumption on the behavior ofrtvieoement, or a
guarantee on the behavior of the system. For instance, &-RBfluishow the RAT
wizard to specify the system guarantdevays(forall Min {-6:5}: ((v=M
&& inc) -> next(v=(Ml)))).

X -+ CE N - O X

Create a new requirement

Name: ‘Rl ‘

Property: |always (forall M in {-6:5}:
(fv=M && inc) —> next (v = (M + 1))}

£ Indent

Kind: (@) Guarantee
() Assumption

Motes: leach inc is immediately
ifolicwed by
an increment of v

|'gan(el|| o 0K ‘

Figure 31: Specification of a system guarantee property i RA

22 e RAT Users Manual RAT — Requirements Analysis Tool

The Main Window

Once all the signals and all the requirements have beertéasarthe RAT project,

it is possible to move to the Realizability window from whéie button that per-
forms the check of realizability for the selected propertian be pressed as to
start the check for realizability. Figure 32 shows the Readdility window with an
example of realizability problem.

p &l RAT - 111 - O X
File Edit View Help
o d W ¢ ®
New Open Save | Traces * Assurance Simulation |Realizability
Signals % [Requirements C
IName |Tvpe |Klnd |Note5 Ifﬂ |Na.me |K1nd |Propertv |Notes |
The input signal for | . . each inc is immediately
. F . always (forall M in {-6:5}
7
inc booleanE incrementing the val R1 C (V=M && inC) —> next (v = (M + 1)y Tollowed by
of the counter : an increment of v
The input signal for = 3y each dec is immediately
. always (forall M in {-5:6}:
dec boolean E decrementing the 5 G ((lv=M && dec) —> next (v = (M - 1)))) gt by
value of the counter a decrement of v

v -6.6 S The value of the cou

[Z] |

Realizability

i | Check O
1 no
Partition: Threshold [

|Realizability number 1 E I

|Selected requirements were found not realizable
\Reguirements were: R1, R2

[] Dynamic Reordering

Flat Model was
GAME

-- Flattened F5SM model generated from _input_re.xml
——— Mumnad lavare srar lauar af DI AVED 1 :B
[> Checking outcomes

Figure 32: The Realizability window in RAT.

The Check button on the right in the Realizability window of RAT actiea the
realizability checks. The result of the check is showed &l#it text area. In this
particular example the specification is unrealizable bgedhe system may force
the violation of the guarantee requirements by setting ahalsi nc anddec
upl To avoid such behavior we can add an assumption requirenegat (i nc
&& dec) . With this assumption the specification becomes realizgbtgure 33).

A set of assumptions and guarantees is internally conventedan equivalent
NuSMV game structure, and depending on the generated ganctusérthe cor-
responding check algorithms are invoked (with the help efghhanced version of
NuSMYV [4]). The generated game structure is printed in the &g &s to allow
the user to inspect it. Note that, such a game structure may fnesh variables
introduced during conversion. If the tool is not able to cantva RAT specification
into a NUSMV game structure an error message with the subexpresaiming
the problem is printed out.

1At the moment no debugging information is printed out. ThHouge enhanced version of
NUSMYV [4] in many cases is able to construct a strategy for tiséesy as well as for the environment.
In future such support may be added to RAT.

RAT — Requirements Analysis Tool RAT Users Manual e 23

X+ - O X

File Edit View Help

2l;l|l ¢ B

Traces * Assurance Simulation |Realizability

" New Open Save
signals % % Requirements + &G 2
Name |Ty1ae |K1r!d |Note5 a |Name |K}nd |?mpeﬂ'v |N0tes |
The input signal for o each inc is immediately
inc boolean E incrementing the val R1 G al&t{:ﬂ(;ﬂa{;:‘; TJ n:.xst]-[v — M+ 1)) followed by
of the counter - an increment of v
The input signal for | e each dec is immediately
dec boolean E decrementing the R2 G a&g:;?;ﬂ:;”ii :egi v = (M- 1)) followed by
value of the counter a decrement of v
v -6.6 5§ The value of the col GEVer fnp A% dar) ¢ and dec never occur
—— : o AR ltaneausly
] e
Realizability
— '
Check O
1 no
2 yes . |
Partition: Threshold ot
Realizability number 2 = O
Selected requirements were found realizable Z [] Dynamic Reordering

Requirements were: R1, R2, A3 | ‘ |

Flat Model was:

GAME
-- Flattened FSM model generated from _input_re.xm]
o Dimned lavare sra: Jauar wf DI AVED 1

[> Checking outcomes

Figure 33: The Realizability window in RAT.

24 e RAT Users Manual RAT — Requirements Analysis Tool

2 RAT Architecture

In the following the design and implementation of RAT will descussed. The
general information about RAT implementation and run timginment will

be described in Section 2.1. Section 2.2 explains architaigpbatterns used during
RAT development. The hierarchy of the RAT software is désatiin Section 2.3.

2.1 Architecture and Implementation Notes

RAT is a stand-alone multi-platform application that run®ne process. Even if
multi-threading is used to run external verification engjrthe GUI part fits into a
single main thread.

RAT has been fully developed with thigythonobject-oriented programming lan-
guage, and the GUI part relies on thgGTKgraphical toolkit to draw itself to the
screen, and to handle the interaction with the user.

The coding followed a few standards "de facto”. Classeshous and functions
names followPyGTKs convention (seéttp://ww. pygt k. org), that derives
from the GTK's one (sebt t p: / / ww. gt k. or g). Style and indentation are strictly
Pythoncompliant. Packages and filenames are java style, butIgligiss restric-
tive: e.g. afilef oo_and_f 0o. py contains definition of clasBooAndFoo, but may
contains the definitions of other classes if convenient.

RAT uses external tools to check properties for Propertyufesse, Simulation
and Realizability. In particular currently it relies on thesSMV and Vis model
checkers that are written in Posix C language. The tools @tedcand used by
RAT as external processes, and are kept separated from RAN lapstraction
layer calledStubthat exports a standard interface.

RAT is based on several other software entities, that affecoftware architec-
ture. The picture in Figure 34 shows the main set of layer&uace entities which
RAT relies on. The layers depict the dependencies amongrtiitees, as higher
parts depend on lower parts.

At the top is positioned the RAT Application, gray shaded takmit clearly dis-
tinguishable from the other parts.

The single parts are described in the following from thediutto the top.
Operating System & Runtime System Libraries Those depend on the specific
architecture implemented on the host computer. Currenfiyf Ras been

tested unde6GNU/Linuxwith a 2.4 and 2.6 kernel.

RAT — Requirements Analysis Tool RAT Architecture e 25

RAT Application

MVC & Observer
Infrastructure

PyGTK Bindings

ool Stubs

GTK Toolkit Python Library NuSMV VIS

Operating System & Runtime System Libraries

Figure 34: RAT- Software parts and collocation

GTK Toolkit GTK is a set of libraries that provide a pretty platform indegent
support for drawing and handling graphical widgets like daws, buttons,
text entries, fonts, etc. Séetp://ww. gtk. org for further information
about GTK and its components.

Python Library This is a general multi-platform runtime environment pd®d
by the Python environment. It provides a large set of features and data
structures to be used from aRythorrbased application. It also provides a
portable abstraction layer over the underlying Operatiygfe&8n, making the
application platform independent. See p: / / ww. pyt hon. or g for further
information.

NUSMV and Vis These are the Model Checkers RAT is currently based on.

PyGTK Bindings This is aPythonbinding that allowsPythonprograms to use
the GTK Toolkit. See alit t p: / / www. pygt k. or g for further information.

MVC & Observer Infrastructure This is aPythonpackage that helps to design
and develop GUI applications. Itimplements Medel-View-Controllerand
the Observematterns developed specifically fByGTK

RAT Application This is the set ofPythonpackages that implement the RAT
application. The underlying layers make RAT platform inelegent, and the
internal sub-parfool Stubsnsulates RAT even from the model checkers.

2.2 Architectural Patterns

RAT has a pretty complex structure, as it currently fits inesepackages, about 65
modules and 12300 lines &ythoncode including comments. RAT is character-
ized by strongly interconnected features, and by the neeédrfontal communi-
cation among independent parts. Furthermore, it providasyrdifferent indepen-
dent views over the same objects, and those views are oftentfadly editable by
the user. Whenever one of those view is changed by the usgrRAD itself, all
the other should react accordingly.

26 e RAT Architecture RAT — Requirements Analysis Tool

To reduce the structural complexity, to keep a clean desigd,to minimize the
development and maintenance costs, two architecturadrpativere considered:
The Model View Controller MV C) and theObserverpatterns, see [3].

The Model-View-Controller pattern

MVCis an architectural pattern that forces the designer tdkiurpdhe application
being designed among three main parts: a Model, a View andr@len. The
traditional implementation of this pattern reflects themakdata flow of non-GUI
applications: data input, data processing, and resuleptagon. Historically, the
MVC pattern is an attempt to map this natural data flow to the Geibthe In fact,
it associates the data input to the Controller, the datagssing to the Model, and
the result presentation to the View.

In RAT this pattern is implemented in tiVC and Observer Infrastructurel his
implementation wanted to be different from the traditiooaé, as it is specific for
the underlying graphical toolkitRyGTK) and languageRythor) to exploit their
peculiarities and features. In particular, a part of théitimnal View's features
have been moved to the Controller, and the model has been noadevare of
the existence of any Controller or View. In combination wiitle Observerpattern
(see next section), this allows for a real separation of pipdi@ation logic from the
presentation layer.

Model Contains the logic of the program, intended as data and datgpoiation
routines. Models can communicate with other models (eafigevith mod-
els that they contain), but do not know the other parts ofM&C pattern,
namely the Controller and the View. This limitation guassed the insulation
between the application logic and presentation.

View Contains the presentation layer. The View constituted bstafgraphical
widgets organized as a forest (typically a single tree). Wglsi widgetis
one atomic GUI element, like a button, a text label, a windete, Often
widgets are containers for other widgets, hence widgetsoayanized in
trees, where vertices represents the containment retathsifor the models,
views do not know the models they are connected to, as theectian is
delegated to the controllers. This is another variatiorhwitspect to the
original MVC pattern, as this implementation is intended to fit bettehwit
the PyGTKtoolkit.

Controller Contains the actions that must be carried out when a viewt éeen
quires the interaction with the model’s logic. The Congpik always con-
nected to a single Model, and to a single View, making a solihkfamong
these two separated parts of the pattern. If a Controllebearonnected to
one Model, the same model can connect more controllers &ea ime.

RAT — Requirements Analysis Tool RAT Architecture e 27

The Observer pattern

The Observerpattern connects the application logic to the presentdtiger, by
allowing the latter to be notified when the former changes.

The Observemattern is ofter used together with th®/C pattern, and to a certain
extent it may be considered as complementary, as it harttdedata flow from the
model to the view, whereas in théVC pattern the communication goes generally
from the View to the Model through the Controller.

This communication is carried out without making the modereknow the exis-
tence of the view, by using observable properties withimtioglel, and by defining
observers over those properties. The observers will béewhtif any changing that
occur to the observable properties.

In RAT theMVC and Observer Infrastructuggrovides an implementation for both
the patterns. In particular, any Model can contain obséevptoperties, and any
Controller is by default an Observer for the Model it is cocted to.

2.3 Software Structure

The software structure of RAT is strongly affected by theigras it is based on,
and by the other software entities it relies on, that haventseeady shown in
Figure 34.

The main part of RAT is represented by its core, fully basedheMVC & Ob-
server Infrastructure At the core sides, there exist services and resourcesaithat
available transversally to the core. Figure 35 provideseng@tails about the core
and the provided services.

Utilities and Views
Services Ghoee

(0
J

N —
Tool Stubs Controllers Resources S—
Images

Threading —

Control Models =
ontro XML
Schemata

Model
Checkers]

MVC & Observer Infrastructure

Figure 35: RAT- Software Structure

At the leftmost side of Figure 35 are depicted the most ingrdrservices that are
available to models, controllers and views. These sendoesot fit well with the
MVC andObserverpatterns as they do not have any associated view, or any user
interaction.

Utilities and Services Contains general utilities, globally accessible data, etc

28 e RAT Architecture RAT — Requirements Analysis Tool

Tool Stubs Stubs are those entities that isolate RAT from the externatié\
Checkers. Stubs export an interface known to RAT, and eadehabecker
has an associated stub. The result is that RAT can call a nobdeker
careless of the specific Model Checker it is actually calling

Threading Control Provides fine-grained portable control over threads. Tdis s
vice is used for example in stubs invocation, for runningrtieaelel checkers
in background, for controlling the associated process,fandapturing its
output.

At the rightmost side of Figure 35 are depicted those ressuttat are exclusively
used by the RAT Views. Noticeable resources are:

Glade Files As already mentioned, a Views is a forest of widgets. The eifslg
can be build and connected each other by hand, or by usinggmmoging
tools like glade(seeht t p: // gl ade. gnore. or g). This tool can be used to
visually design a forest of widgets representing the viewidgets. With
very few limitations, this tool can be used then to set theperties of all
widgets, and to associate action to be carried out when aicextents oc-
cur (signals). For example a widget like a button can be #@smucwith a
function name to be called when clicked. The result of thésation and set-
ting process is a glade file, that can be loaded at runtime &¥¥C and
Observer Infrastructurghat provides the needed support for Views creation
based on glade files, and to connect the associated Corgrtii provide
the implementation of signals actions.

Images Contains icons, and other images to be shown by the views.

Tools Stubs

As already mentioned, the interaction with the model chexckke NUSMV and

Vis is managed by &tuh a software entity that provides platform and Operating
System independent support for running generic externaletncheckers. The
execution of a model checker is restricted to a stand-allorgad that controls the
model checker within @ession The session is monitored, and can be stopped at
any time if the underlying Operating System supports peaaterruption. Also,

the stub provides access to the session I/O, allowing taioafihe model checker
standard output and error, and to control its standard input

A stub execution is a sequence of events:

The stub is initialized.

A session is initialized.

The session is prepared (setting of session options).
The session is run.

Session results are processed.

© gk~ w0 Dn e

The session is de-initialized.

RAT — Requirements Analysis Tool RAT Architecture e 29

7. The stub is de-initialized.

The phases from 2 to 6 may be possibly repeated indefinitely.

A generic stub might control a model checker in any way, eithéatch mode,

in interactive mode or through its library. In RAT the stulbstt control both
NUSMV and Vis use the model checkers in batch mode, launching their respec
tive executable files. This is achieved by specializing theegic stub classes, by
implementing some interfaces and overloading some clagisoa that handles
the execution of a single session in batch mode.

A vertical view over the Software Structure

The RAT software structure has been split horizontally bggitheMVC and Ob-
server Infrastructure There exists also a vertical splitting that breaks thensk
structure up through a hierarchy of software entities.

Application

Options Project

Pro.perf\{ Property Options Requirements f’roperFy Traces
Realizability Assurance Simulation Manager

e

Possibilities Assertions

Signals

Property Trace Signal

Realizability Assurance
NuSMV Stub NuSMV Stub VIS Stub

Figure 36: RAT- Hierarchy of main software entities

Figure 36 depicts the hierarchy of the main software estiti@at occur within
RAT. Each of the boxes represents a software entity, and eatéx of the hi-
erarchy tree is a containment relation, where cardinaditpat expressed. That
means for example that an Application contains one (or mem#jvare entities to
represent a Project and the Options of the Application.

The way each software entity is implemented depends on titg’emole. Those
entities that need to be shown, will follow tihdVC pattern, and will be mapped
down to three object-oriented classes (or to a triple of #didhset of classes) to as-
sociate to each entity a Model, a View and a Controller. Fangxe, the entity ap-
plication’s Options has a model to hold the options, and alouiew/Controller
to present the options to the user, and to allow the user tafyntiee options.

30 e RAT Architecture RAT — Requirements Analysis Tool

Those entities that instead do not need to be shown (e.gtubg) swill be mapped
directly down to one class, or to a set of classes.

In the following the software entities depicted in Figuree36 detailed.

Application The application is the top-level entity. When the RAT exabl file
is run, a triple Model, View and Controller of this entity Wie instantiated
and connected each other, and RAT will finally enter in themeaient loop
to handle user interaction and events.

Application Options This entity is a container for application’s options. For ex
ample tools paths, and other general purpose options stiauldcalized
within this entity. A the moment this entity is empty, and réaés not an
associated View for it.

Project This entity represents a RAT project. The project’s modeltams most
of the application logic, meaning that most of the applma models are
contained within this model. The view is embedded withindpglication’s
main window whenever a project is created, and it is coretitlby a large
number of sub-views corresponding to the contained egtitie

Project Options This entity is a container for the project’s options. Simijlao
the Application Options entity, this entity is currently pty, and there is no
associated view.

Signals This entity contains the set of signals used by Property rassme and
Realizability.

Requirements This entity contains the set of requirements used by Prppest
surance and Realizability.

Property Assurance This is the entity for Property Assurance. Its view is shown
when the Property Assurance feature is selected at thecapphi level.

Property Simulation This is the entity for Property Simulation. Its view is shown
when the Property Simulation feature is selected at thacgtin level.

Property Realizability This is the entity for Property Realizability. Its view is
shown when the Property Realizability feature is selectateaapplication
level.

Traces Manager This entity handles the set of traces that have been gederate
in the project. Also, this entity organizes the set of tragéthin a set of
categories that traces belong to.

Assurance NUSMV Stub The Property AssurancelSMV stub handles the in-
teraction of RAT with the NSMV model checker when Property Assurance
is run. This entities has no associated View and Contradied, it is imple-
mented by a single class. This class is the specializatianmbre generic
classes hierarchy that provides support for implementoagi§ic tool stubs.

Realizability NuUSMV Stub The Property Realizability NSMV stub handles
the interaction of RAT with the enhanced version ot 38MV [4] when
Property Realizability is run. This entities has no asgecid/iew and Con-
troller, and it is implemented by a single class. Similadythe Property
Assurance NSMV Stub already available in RAT, this class is the special-
ization of a more generic classes hierarchy that providppat for imple-
menting specific tool stubs.

RAT — Requirements Analysis Tool RAT Architecture e 31

Possibilities Contained within the Property Assurance entity, this gntipre-
sents the set of possibilities for Property Assurance.

Assertions Contained within the Property Assurance entity, this gmépresents
the set of assertions for Property Assurance.

Signal This entity represent a single signal. The model contaifesrimation about
the signal, like the name and type information. The view @ghwhen the
user wants to create or edit a signal.

Vis Stub Like the NUSMYV Stubs entities, but specific for tha&/model checker.

Trace A trace is the result of model checking, and can represemereit withess
or a counter-example. In RAT there exist several view oveaeet as they
can occur within the main application window, and within Thace Manager
window. In general a trace can be shown as a graphical wamefeith some
associated information like the category it belongs to,rthmber of steps,
the loop information, etc.

Property This entity represent a single property, like a requirenoera possibil-
ity. The model contains information about the propertye ltke name and
formula. The view is shown when the user wants to create draegiop-
erty. There exist a dependency between a property and thasestthere
were generated from it. Whenever a property’s formula is\ged, the cor-
responding traces will be invalidated.

More information about RAT implementation details can b&awobin [2].

32 e RAT Architecture RAT — Requirements Analysis Tool

3 References

[1]

[2]

[3]

R. Bloem, R. Cavada, A. Cimatti, I. Pill, M. Roveri, S. Sprmi, and A. Tchaltsev.
RAT: A tool for formal analysis of requirements. Demo Session of the #7European
Conference on Artificial Intelligen¢&Riva del Garda, Italy, 2006.

R. Bloem, R. Cavada, C. Eisner, I. Pill, M. Roveri, and Sn$rini. Manual for property
simulation and property assurance tool, November 2005y@rDelivarable D1.2/4-5.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, an&fdl. Pattern-Oriented
Software Architecture: A System Of Patterndohn Wiley & Sons Ltd., West Sussex,
England, 1996.

[4] A.Cimatti, M. Roveri, and A. Tchaltsev. Manual for praperealizability tool, December

5]
[6]

[7]

2006. Prosyd Delivarable D1.2/8.
NUSMV home pagehttp://nusmv.irst.itc.it/.

I. Pill, S. Semprini, R. Cavada, M. Roveri, R. Bloem, and@imatti. Formal analysis
of hardware requirements. In Ellen Sentovich, ediidgsign Automation Conference
(DAC), pages 821-826. ACM, 2006.

PROperty based SYstem Design PROSYDt p: / / www. prosyd. or g/, 20086.

[8] Accellera, Property Specification Language - Referedeamual - Version 1.01ht t p:

[9]

' www, eda. or g/ vfv/ docs/ psl _| rm 1. 01. pdf , April 2003.

RAT — Requirements Analysis Toohttp://rat.itc.it/.

RAT — Requirements Analysis Tool References e 33

