
Semantics of the
System-Level Integrated Modeling

(SLIM) Language

Document: SLIM Semantics
Doc ID: –
Author(s): Anonymous

Issue: 2.2
Date: 08-Dec-2014
Page: 1/22

Contents

1 Semantic Domains 2
1.1 Basic Sets . 2
1.2 Components . 2
1.3 Modes . 5
1.4 Ports . 6
1.5 Port Connections . 7
1.6 Flows . 8
1.7 Data Elements . 8
1.8 Mode Transitions . 8
1.9 Reactivation Transitions . 9

2 Semantics of Nominal Specifications 10
2.1 Formalizing the Local Behavior of Components 10

2.1.1 Event-Data Automata . 10
2.1.2 Semantics of Event-Data Automata . 11
2.1.3 Representing SLIM Components as Event-Data Automata 12

2.2 Formalizing the Global Behavior of Systems 14
2.2.1 Networks of Event-Data Automata . 14
2.2.2 Semantics of Networks of Event-Data Automata 14
2.2.3 Representing SLIM Specifications as Networks of Event-Data Automata 17

3 Semantics of Error Models 19
3.1 Additional Semantic Domains . 19

3.1.1 Error Types and Implementations . 19
3.1.2 Fault Injection . 20

3.2 Model Extension . 20

Document: SLIM Semantics
Doc ID: –
Author(s): Anonymous

Issue: 2.2
Date: 08-Dec-2014
Page: 2/22

Chapter 1

Semantic Domains

1.1 Basic Sets

The following basic sets are used throughout this document:

Ide: the set of identifiers

Nam: the set of names, given by Nam := Ide.Ide

Cat : the set of component categories, given by

Cat := {process, thread group, thread, data,
processor, memory, bus, device, system}

Typ: the set of (component and data) types, given by

Typ := Ide ∪ {[l..u] | l, u ∈ Z, l ≤ u} ∪
{bool, clock, continuous, enum(e1, . . . ,en), int, real}

where n ≥ 1 and ei ∈ Ide for each i ∈ [n].

1.2 Components

Every system specification S describes a hierarchy of components where each component is
defined by its type and its implementation. In particular, the component implementation de-
scribes its structure as an assembly of subcomponents where each subcomponent is referenced
by an identifier. Thus each component in S is uniquely identified by a sequence of subcom-
ponent identifiers (which corresponds to a path in the tree structure of S). The following
recursive definition formally specifies

• the set of components, Cmp ⊆ Ide+,

• the category of each component c, cat(c) ∈ Cat ,

• its type (identifier), typ(c) ∈ Typ, and

• its implementation (name), imp(c) ∈ Nam.

Document: SLIM Semantics
Doc ID: –
Author(s): Anonymous

Issue: 2.2
Date: 08-Dec-2014
Page: 3/22

Here we assume that main is the given main component with category cat(main) ∈ Cat , type
typ(main) ∈ Typ and implementation imp(main) ∈ Nam.

• main ∈ Cmp;

• whenever c ∈ Cmp such that the specification of imp(c) contains

subcomponents . . . sc: cc tp.im . . . ; . . . ,

then

– c′ := c.sc ∈ Cmp,1

– cat(c′) := cc,

– typ(c′) := tp, and

– imp(c′) := tp.im (if cat(c′) = data, then we let imp(c′) := tp).

Moreover we distinguish the following component classes :

• data components : DCmp := {c ∈ Cmp | cat(c) = data},

• control components : CCmp := Cmp \ DCmp, and

• atomic control components : ACmp := {c ∈ CCmp | c.Ide+ ∩ CCmp = ∅} ⊆ CCmp.

Example 1.1 For the specification (cf. [COM09, Ex. 4.4/4.6])

process Cruise

features

engage: in event port;

brake: in event port;

speed: in data port real;

throttle: out data port real;

end Cruise;

process implementation Cruise.Impl

subcomponents

input: thread Input.Impl;

output: thread Output.Impl;

connections

event port engage -> input.engage;

event port brake -> input.brake;

data port speed -> input.speed;

data port input.control -> output.control;

data port output.throttle -> throttle;

end Cruise.Impl;

thread Input

features

1If subcomponent identifiers (sc) are unique and if each component implementation is used only once in S,
then it suffices to consider Cmp := Ide by letting sc ∈ Cmp.

Document: SLIM Semantics
Doc ID: –
Author(s): Anonymous

Issue: 2.2
Date: 08-Dec-2014
Page: 4/22

engage: in event port;

brake: in event port;

speed: in data port real;

control: out data port int default 0;

end Input;

thread implementation Input.Impl

subcomponents

timer: data clock in modes (enabled);

set: data real in modes (enabled);

modes

idle: activation mode;

enabled: mode while timer <= 100;

transitions

idle -[engage then timer := 0; set := speed]-> enabled;

enabled -[when speed <set then control := 1]-> enabled;

enabled -[when speed >set then control := -1]-> enabled;

enabled -[brake]-> idle;

enabled -[when timer >= 100]-> idle;

end Input.Impl;

thread Output

features

control: in data port int;

throttle: out data port real;

end Output;

thread implementation Output.Impl

...

end Output.Impl;

we obtain (assuming that Output.Impl does not define any subcomponents):

Cmp = {main, main.input, main.input.timer, main.input.set, main.output}
DCmp = {main.input.timer, main.input.set}
CCmp = {main, main.input, main.output}
ACmp = {main.input, main.output}

As all component identifiers are unique, it suffices to set

Cmp := {main, input, timer, set, output}

which yields
c ∈ Cmp cat(c) typ(c) imp(c)
main process Cruise Cruise.Impl

input thread Input Input.Impl

timer data clock clock

set data real real

output thread Output Output.Impl

Document: SLIM Semantics
Doc ID: –
Author(s): Anonymous

Issue: 2.2
Date: 08-Dec-2014
Page: 5/22

1.3 Modes

Modes can be attached to control components to define an automata-like behavior, and to
model dynamic reconfiguration of the system. In our formal semantics, they are represented
by associating the following information with each c ∈ CCmp:

• the (finite) set of its modes, Mod(c) ⊆ Ide,

• its starting mode, stm(c) ∈ Mod(c),

• the invariant of each mode, inv(c,m),

• the set of its (direct) subcomponents which are active in the respective mode m ∈
Mod(c), Act(c,m) ⊆ Ide, and

• the binding relations

– Acc(c,m) ⊆ Act(c,m)× Act(c,m) (accesses),

– Run(c,m) ⊆ Act(c,m)× Act(c,m) (running on), and

– Sto(c,m) ⊆ Act(c,m)× Act(c,m) (stored in).

This is accomplished as follows.

• Whenever the specification of imp(c) contains

modes . . . m: tp mode while iv; . . . ,

then

– m ∈ Mod(c),

– stm(c) := m if tp ∈ {initial, activation}, and

– inv(c,m) := iv ;

and

• whenever the specification of imp(c) contains

subcomponents . . . sc: cc im bn sc ′ . . . in modes(m1, . . . ,mn); . . .

where sc, sc′ ∈ Ide, cc ∈ Cat , im ∈ Nam, bn ∈ {accesses, running on, stored in},
and n ≥ 1, then for every i ∈ [n]

sc ∈ Act(c,mi)

and

(sc, sc′) ∈


Acc(c,mi) if bn = accesses

Run(c,mi) if bn = running on

Sto(c,mi) if bn = stored in

Document: SLIM Semantics
Doc ID: –
Author(s): Anonymous

Issue: 2.2
Date: 08-Dec-2014
Page: 6/22

Note that, according to the syntactic restrictions imposed in [COM09, Sct. 4.3.1], each binding
relation of a component c ∈ CCmp in mode m ∈ Mod(c) only relates subcomponents that are
active in m.

If the implementation of a control component c ∈ CCmp does not employ any modes, then
we assume that Mod(c) = {stm(c)} for some initial mode stm(c) = m0. As abbreviations
we use CSub(c) :=

⋃
m∈Mod(c){sc ∈ Act(c,m) | c.sc ∈ CCmp} for the set of (direct) control

subcomponents of c2, DAct(c,m) := {sc ∈ Act(c,m) | c.sc ∈ DCmp} for the set of data
subcomponents of c that are active in mode m, and Mod :=

⋃
c∈CCmp Mod(c) for the set of all

modes occurring in the specification.

Example 1.2 For the specification in Example 1.1, we obtain

Mod(main) = {m0} Mod(input) = {idle, enabled} Mod(output) = . . .

where the respective starting mode stm(c) is underlined, and

inv(main,m0) = true Act(main,m0) = {input, output}
inv(input, idle) = true Act(input, idle) = ∅

inv(input, enabled) = (timer <= 100) Act(input, enabled) = {timer, set}
inv(output, . . .) = . . . Act(output, . . .) = . . .

1.4 Ports

Let c ∈ CCmp. The ports of c are denoted as follows. Whenever the specification of typ(c)
contains features . . . p: pc; . . . with

• pc = in event port, then p ∈ IEPrt(c),

• pc = out event port, then p ∈ OEPrt(c),

• pc = in data port tp, then p ∈ IDPrt(c) and typ(c, p) := tp, and

• pc = out data port tp . . ., then p ∈ ODPrt(c) and typ(c, p) := tp.

A subset of ports OEPrtNB(c) ⊆ OEPrt(c) is defined for ports declared nonblocking,
i.e. if pc = out event port nonblocking, then p ∈ OEPrtNB(c).

As abbreviations we use:3

EPrt(c) := IEPrt(c) ∪OEPrt(c),

EPrt :=
⋃

c∈CCmp

EPrt(c),

DPrt(c) := IDPrt(c) ∪ODPrt(c), and

DPrt :=
⋃

c∈CCmp

DPrt(c).

2Note that every subcomponent of c has to be active in at least one of the modes of c.
3Note that according to the syntactic restrictions imposed in [COM09, Sct. 4.2.2], typ(c,DPrt(c)) ⊆

{[l..u] | l, u ∈ Z, l ≤ u} ∪ {bool, enum, int, real}.

Document: SLIM Semantics
Doc ID: –
Author(s): Anonymous

Issue: 2.2
Date: 08-Dec-2014
Page: 7/22

Example 1.3 For the specification in Example 1.1, we obtain

c ∈ Cmp IEPrt(c) OEPrt(c) IDPrt(c) ODPrt(c)
throttle}
main {engage, brake} ∅ {speed} {throttle}
input {engage, brake} ∅ {speed} {control}
output ∅ ∅ {control} {throttle}

with
typ(main, speed) = typ(main, throttle) =
typ(input, speed) = typ(output, throttle) = real

and
typ(input, control) = typ(output, control) = int.

1.5 Port Connections

Let c ∈ CCmp. The event port connections of c are denoted as follows. Whenever the
specification of imp(c) contains

connections . . . event port sc1 .p1 -> sc2 .p2 in modes(m1, . . . ,mn) [passive]; . . .

(where, for each i ∈ [2] and j ∈ [n], sci ∈ Act(c,mj) ∪ {ε}), then

(sc1 .p1, sc2 .p2, b) ∈ ECon(c,mj)

for each j ∈ [n] where b = true if the passive attribute is present and b = false otherwise.
Thus, according to the syntactic restrictions imposed in [COM09, Sct. 4.3.2],

ECon(c,m) ⊆ IEPrt(c) × IES (c,m) × {false}
∪ OES (c,m) × OEPrt(c) × {false}
∪ OES (c,m) × IES (c,m) × B

where IES (c,m) := {sc.p | sc ∈ Act(c,m), p ∈ IEPrt(c.sc)} and OES (c,m) := {sc.p | sc ∈
Act(c,m), p ∈ OEPrt(c.sc)}.

Analogously we can define the set of data port connections

DCon(c,m) ⊆ IDPrt(c) × IDS (c,m)
∪ ODS (c,m) × ODPrt(c)
∪ ODS (c,m) × IDS (c,m)

where IDS (c,m) := {sc.p | sc ∈ Act(c,m), p ∈ IDPrt(c.sc)} and ODS (c,m) := {sc.p | sc ∈
Act(c,m), p ∈ ODPrt(c.sc)} (without requiring the additional Boolean passive attribute).
Note that typ(c, p1) = typ(c, p2) for each (p1, p2) ∈ DCon(c,m).

Example 1.4 For the specification in Example 1.1, we obtain

ECon(main,m0) = {(engage, input.engage, false),
(brake, input.brake, false)}

DCon(main,m0) = {(speed, input.speed),
(input.control, output.control),
(output.throttle, throttle)}.

The remaining sets are empty.

Document: SLIM Semantics
Doc ID: –
Author(s): Anonymous

Issue: 2.2
Date: 08-Dec-2014
Page: 8/22

1.6 Flows

Let c ∈ CCmp. The flows of c are denoted as follows. Whenever the specification of imp(c)
contains

flows . . . d := a in modes(m1, . . . ,mn); . . .

(where d ∈ ODPrt(c) and a is an expression over IDPrt(c)), then

(a, d) ∈ Flw(c,mi)

for each i ∈ [n].

1.7 Data Elements

Together, the data subcomponents and the data ports constitute the data elements of a control
component c ∈ CCmp in mode m ∈ Mod(c):4

Dat(c,m) := DAct(c,m) ∪ DPrt(c) ⊆ Ide.

Again we set Dat(c) :=
⋃
m∈Mod(c) Dat(c,m) and Dat :=

⋃
c∈CCmp Dat(c).

We distinguish the following kinds of data elements:

• clocks : Clk(c,m) := {d ∈ DAct(c,m) | typ(c, d) = clock}

• continuous variables : Cnt(c,m) := {d ∈ DAct(c,m) | typ(c, d) = continuous}

• discrete data elements : Dsc(c,m) := Dat(c,m) \ (Clk(c,m) ∪ Cnt(c,m)) 5

Again we allow to use notations such as Clk(c).
Using the default attribute, a (control) component specification can assign default values

to both (incoming and outgoing) data ports and data subcomponents. In our semantics, this
assignment is represented by a partial mapping dfl(c, d) which associates constant values to
(some of) the data elements d ∈ Dat(c). Here we assume that dfl(c, d) = 0 for every clock
d ∈ Clk(c).

1.8 Mode Transitions

The set of mode transitions of a control component c ∈ CCmp, MTr(c), is defined as follows:
whenever the specification of imp(c) contains an entry of the form

transitions . . .m -[p when g then f]-> m′; . . .

where m,m′ ∈ Mod(c), p ∈ {sc.p | sc ∈ Act(c,m) ∪ {ε}, p ∈ EPrt(c.sc)} ∪ {reset, τ}, g
denotes a guard, and f is an effect (as defined in [COM09, Sct. 4.3.4]), then

(m, p, g, f,m′) ∈ MTr(c).

4Note that data components have neither subcomponents nor ports, and that the set of (data) ports does
not depend on the current mode.

5Note that according to the syntactic restrictions in [COM09, Sct. 4.2.2], clocks and continuous variables
cannot be used as data ports, i.e., DPrt(c) ⊆ Dsc(c).

Document: SLIM Semantics
Doc ID: –
Author(s): Anonymous

Issue: 2.2
Date: 08-Dec-2014
Page: 9/22

Example 1.5 For the specification in Example 1.1, we obtain

MTr(main) = ∅
MTr(input) = {(idle, engage, true, (timer := 0; set := speed), enabled),

(enabled, τ, speed < set, control := 1, enabled),
(enabled, τ, speed > set, control := -1, enabled),
(enabled, brake, true, ε, idle),
(enabled, τ, timer >= 100, ε, idle)}

MTr(output) = . . .

1.9 Reactivation Transitions

The set of reactivation transitions of a control component c ∈ CCmp, RTr(c), is defined as
follows: whenever the specification of imp(c) contains an entry of the form

transitions . . .m -[@activation then f]-> m′; . . .

where m,m′ ∈ Mod(c) and f is an effect (as defined in [COM09, Sct. 4.3.4]), then

(m, f,m′) ∈ RTr(c).

Document: SLIM Semantics
Doc ID: –
Author(s): Anonymous

Issue: 2.2
Date: 08-Dec-2014
Page: 10/22

Chapter 2

Semantics of Nominal Specifications

This chapter defines the operational semantics of a SLIM specification under the following
restrictions:

• Error behavior is ignored (“nominal”).

• Events are not queued but have to be transmitted in a handshaking operation (“syn-
chronous”), in correspondence with AADL’s handling of events that trigger mode tran-
sitions [SAE08, p. 170].

2.1 Formalizing the Local Behavior of Components

The semantics is specified by first introducing a new automata model, called event-data au-
tomata, which is employed to formalize the local behavior of a component. We then show how
to represent a SLIM component specification as an event-data automaton.

2.1.1 Event-Data Automata

An event-data automaton (EDA) is a tuple of the form

A = (M ,m0,X , v0, χ, ϕ,E ,−→,⇒)

where

• M is a finite set of modes,

• m0 ∈ M denotes the starting mode,

• X is a finite set of variables, partitioned into

– input variables, IX ,

– output variables, OX , and

– local variables, LX ,

• v0 ∈ VX is the initial valuation where VX denotes the set of all valuations, that is,
partial functions that assign values to the elements of X ,

Document: SLIM Semantics
Doc ID: –
Author(s): Anonymous

Issue: 2.2
Date: 08-Dec-2014
Page: 11/22

• χ : M → (VLX → B) specifies the mode constraints (where we assume that χ(m0)(v0|LX) =
true),

• ϕ : M → (LX → R) specifies the trajectory equations by associating with each local
variable its derivative in the current mode1,

• E is a finite set of events, partitioned into

– input events, IE , and

– output events, OE , and

• −→ ⊆ M × Eτ × (VX → B) × (VX → VX) ×M is a finite (mode) transition relation

where Eτ := E ∪{τ}. Transitions are represented in the form m
e,g,f−→ m′, and e, g, and f

are called the trigger, the guard, and the effect, respectively. Here f is allowed to modify
only output and local variables, that is, f(v)(x) = v(x) for each v ∈ VX and x ∈ IX .

• ⇒ ⊆ M × (VX → VX) ×M is a finite reactivation transition relation. Transitions are

represented in the form m
f

⇒ m′, and f is called the effect. Here f is allowed to modify
only output and local variables, that is, f(v)(x) = v(x) for each v ∈ VX and x ∈ IX .

2.1.2 Semantics of Event-Data Automata

The operational semantics of an EDA is given as a labeled transition system whose states,
called configurations, are pairs of modes and valuations. Transitions either model the passing
of time, involving an update of the non-discrete variables, or are internally triggered by events,
including the invisible event τ . The second case requires the guard of the respective transition
to be enabled, and then modifies the valuation of the variables according to the transition
effect.

The definition of the semantics employs the following notation. Given a valuation v ∈ VX ,
a time delay t ∈ R>0, and a mapping ϕ : LX → R of trajectory equations, the notation
v + t · ϕ denotes the corresponding temporal modification of the local variables, that is, for
each x ∈ X ,

(v + t · ϕ)(x) :=

{
v(x) + t · ϕ(x) if x ∈ LX
v(x) otherwise

Formally, the semantics of an EDA is given by the labeled transition system

(Cnf , κ0,L,−→)

with

• the set of (local) configurations Cnf := M × VX ,

• the initial configuration κ0 := (m0, v0) ∈ Cnf ,

• the set of transition labels L := R>0 ∪ Eτ , and

1If ϕ(m)(x) = 0, then x is a discrete variable, if ϕ(m)(x) = 1, then it is a clock, and otherwise it is a hybrid
variable.

Document: SLIM Semantics
Doc ID: –
Author(s): Anonymous

Issue: 2.2
Date: 08-Dec-2014
Page: 12/22

• the (local) transition relation −→ ⊆ Cnf × L× Cnf , given by

– time transition: (m, v)
t−→ (m, v + t · ϕ(m)) if

∗ t ∈ R>0 and

∗ the invariant stays valid for t time units2: χ(m)(v|LX + t · ϕ(m)) = true.

– internal or event transition: (m, v)
e−→ (m′, f(v)) if

∗ e ∈ Eτ and

∗ in the current mode m, an e-transition is enabled where the invariant of the

target mode is valid after applying the transition effect: there exists m
e,g,f−→ m′

in A such that g(v) = true and χ(m′)(f(v)|LX) = true.

– reactivation transition: (m, v)⇒ (m′, f(v)) if

∗ in the current mode m, an reactivation-transition is enabled where the invariant
of the target mode is valid after applying the transition effect: there exists

m
f

⇒ m′ in A such that χ(m′)(f(v)|LX) = true.

2.1.3 Representing SLIM Components as Event-Data Automata

Given a SLIM component specifications as represented by the sets and mappings that were
introduced in Chapter 1, we can now define an EDA that represents the local behavior of
the component. Here we denote the value of a given Boolean expression b (such as a mode
invariant or a transition guard) with respect to a valuation by JbK : VX → B. Likewise, JaK(v)
denotes the value of an expression a with respect to the valuation v ∈ VX .

The definition is based on the following associations:

• The meaning of modes in the SLIM component and in the EDA is identical.

• Incoming and outgoing data ports are interpreted as input and output variables, respec-
tively, and data subcomponents are interpreted as local variables.

• Events in the EDA are either SLIM event ports, or are used to represent the event
communication between a supercomponent and one of its (active) subcomponents. In
the second case, they are of the form sc.p where sc is the identifier of the subcomponent,
and p its event port. Here an incoming event port in the subcomponent gives rise to an
output event in the EDA of the supercomponent, and vice versa.

• Initial valuations, mode constraints and trajectory equations are directly taken from the
SLIM specification.

• (Reactivation) Transition effects are determined as follows:

– incoming data ports are not modified,

– outgoing data ports are updated according to the SLIM transition effect, if given,
and not modified otherwise, and

2Owing to the linearity of constraints, it suffices to check them in the target valuation only.

Document: SLIM Semantics
Doc ID: –
Author(s): Anonymous

Issue: 2.2
Date: 08-Dec-2014
Page: 13/22

– data subcomponents which are active in the target mode of the transition are
updated according to the SLIM transition effect, if given, or else reset to their
default value if they were inactive in the source mode, and not modified otherwise.

Formally, the association is defined as follows. For each control component c ∈ CCmp,
Ac = (M ,m0,X , v0, χ, ϕ,E ,−→,⇒) is given by letting

• M := Mod(c),

• m0 := stm(c),

• X := IX ∪OX ∪ LX where

– IX := IDPrt(c),

– OX := ODPrt(c), and

– LX :=
⋃
m∈Mod(c) DAct(c,m),

• v0 := dfl(c),

• for every m ∈ Mod(c), χ(m) is determined by the constraints occurring in inv(c,m),

• for every m ∈ Mod(c), ϕ(m) is determined by the trajectory equations occurring in
inv(c,m),

• E := IE ∪OE where3

– IE := IEPrt(c) ∪ {sc.p | sc ∈ CSub(c), p ∈ OEPrt(c.sc)} and

– OE := OEPrt(c) ∪ {sc.p | sc ∈ CSub(c), p ∈ IEPrt(c.sc)}, and

– OEnb := OEPrtNB(c)

• −→ := {(m, p, JgK, JfK,m′) | (m, p, g, f,m′) ∈ MTr(c)} where JfK : VX → VX is defined
as follows: JfK(v) := v′ with

– for each d ∈ IDPrt(c), v′(d) := v(d),

– for each d ∈ ODPrt(c),

v′(d) :=

{
JaK(v) if f contains assignment d := a
v(d) otherwise

– for each d ∈ DAct(c,m′),

v′(d) :=


JaK(v) if f contains assignment d := a
dfl(c, d) else if d /∈ DAct(c,m)
v(d) otherwise

• ⇒ := {(m, JfK,m′) | (m, f,m′) ∈ RTr(c)} where JfK : VX → VX is defined the same as
for −→.

3Here the construction can be optimized by only considering those events that occur as transition labels in
c-transitions.

Document: SLIM Semantics
Doc ID: –
Author(s): Anonymous

Issue: 2.2
Date: 08-Dec-2014
Page: 14/22

2.2 Formalizing the Global Behavior of Systems

Now we have to specify how the EDAs that represent single components interact with each
other. This interaction is highly dynamic; local transitions can cause subcomponents to be-
come (in-)active, and can change the topology of event and data port connections and flows.
On the level of the formal model this means that both the activation of the component EDAs
and their interconnection depend on the modes of the EDAs.

2.2.1 Networks of Event-Data Automata

A network of event-data automata (NEDA) is a tuple of the form

N = ((Ai)i∈[n], α,EC ,DD)

where

• each Ai is an EDA of the form Ai = (Mi,m
i
0,Xi, v

i
0, χi, ϕi,Ei,−→i,⇒i) (i ∈ [n]),

• α : M → 2[n] is the activation mapping (where M :=
∏n

i=1 Mi denotes the set of global
modes),

• EC : M → {i.e | i ∈ [n], e ∈ Ei}2 × B is the event connection mapping, and

• DD : M → ({i.x | i ∈ [n], x ∈ IX i ∪ OX i} 99K {j.a | j ∈ [n], a ∈ Exp(IX j) ∪ OX j})
is the data dependence mapping where Exp(IX j) denotes the set of all expressions over
IX j.

2.2.2 Semantics of Networks of Event-Data Automata

The semantics of a NEDA is given by the labeled transition system

(Cnf , κ0,L,=⇒)

which is defined in terms of the local transition systems (Cnf i, κ
i
0,Li,−→i) (i ∈ [n]) of the

constituent EDAs as follows (please refer to the next list for the definitions of the auxiliary
functions):

• the set of (global) configurations is given by Cnf :=
∏n

i=1 Cnf i,

• the initial configuration is κ0 := (κ10, . . . , κ
n
0),

• the set of transition labels is L := R>0 ∪ {τ} ∪ E1, and

• the (global) transition relation, =⇒ ⊆ Cnf × L× Cnf , is given by

– time transition: models the passing of time involving all active EDAs.

κ = (κ1, . . . , κn)
t

=⇒ (κ′1, . . . , κ
′
n)

if there exists t ∈ R>0 such that for each i ∈ [n], κi
t−→ κ′i if i ∈ α(mod(κ)), and

κ′i = κi otherwise.

Document: SLIM Semantics
Doc ID: –
Author(s): Anonymous

Issue: 2.2
Date: 08-Dec-2014
Page: 15/22

– internal transition: represents an invisible step of an active EDA.

κ = (κ1, . . . , κn)
τ

=⇒ cnsκ(nxt(κ, {(i, κ′i)}))

if there exist i ∈ α(mod(κ)) and κ′i ∈ Cnf i such that κi
τ−→i κ

′
i.

– multiway communication transition: an output event is sent from an active EDA
to all active EDAs that offer a corresponding input transition, involving at least
one non-passive event port connection.

κ = (κ1, . . . , κn)
τ

=⇒ cnsκ(nxt(κ, {(j, κ′j) | j ∈ I ∪R ∪ {i}}))

if there exist i ∈ α(mod(κ)), oe ∈ OE i, and κ′i ∈ Cnf i such that κi
oe−→i κ

′
i and

I := {j ∈ α(mod(κ)) \ {i} | ex. ie ∈ IE j s.t. (i.oe, j.ie, bj) ∈ EC (mod(κ))

and κj
ie−→j κ

′
j}

6= ∅,

where bj = false for at least one j ∈ I, and

R := {r ∈ α(mod(config(κ, {(j, κ′j) | j ∈ I ∪ {i}))) \ α(mod(κ)) | κr ⇒r κ
′
r}

are the possible reactivations.

– nonblocking event transition: a nonblocking output event is sent from an active
EDA, without requiring any active EDA to offer a corresponding input transition.

κ = (κ1, . . . , κn)
τ

=⇒ cnsκ(nxt(κ, {(j, κ′j) | j ∈ I ∪R ∪ {i}}))

if there exist i ∈ α(mod(κ)), oe ∈ OEnbi, and κ′i ∈ Cnf i such that κi
oe−→i κ

′
i and

I := {j ∈ α(mod(κ)) \ {i} | ex. ie ∈ IE j s.t. (i.oe, j.ie, true) ∈ EC (mod(κ))

and κj
ie−→j κ

′
j}

where I consists only of passive connections or is the empty set, and

R := {r ∈ α(mod(config(κ, {(j, κ′j) | j ∈ I ∪ {i}))) \ α(mod(κ)) | κr ⇒r κ
′
r}

are the possible reactivations.

– input transition: the first EDA provides an input event that is connected to at least
one EDA (including the first one) in which a corresponding transition is enabled.

κ = (κ1, . . . , κn)
ie

=⇒ cnsκ(nxt(κ, {(i, κ′i) | i ∈ I ∪R}))

if there exists ie ∈ IE 1 such that

I := {j ∈ α(mod(κ)) | ex. ie ′ ∈ IE j s.t. (1.ie, j.ie ′, false) ∈ EC (mod(κ))

and κj
ie′−→j κ

′
j}

6= ∅.

and

R := {r ∈ α(mod(config(κ, {(j, κ′j) | j ∈ I))) \ α(mod(κ)) | κr ⇒r κ
′
r}

are the possible reactivations.

Document: SLIM Semantics
Doc ID: –
Author(s): Anonymous

Issue: 2.2
Date: 08-Dec-2014
Page: 16/22

– output transition: some EDA provides an output event that is enabled, and that is
connected to an output event of the first EDA.

κ = (κ1, . . . , κn)
oe

=⇒ cnsκ(nxt(κ, {(i, κ′i)}))

if there exists oe ′ ∈ OE i such that κi
oe′−→i κ

′
i and (i.oe ′, 1.oe, false) ∈ EC (mod(κ)).

The definition employs the following auxiliary functions:

• mod : Cnf → M , extracting the mode information from a given global configuration:

mod(κ1, . . . , κn) := (mod(κ1), . . . ,mod(κn)) with mod(m, v) := m.

• config : Cnf × 2
⋃

i∈[n]{i}×Cnf i → Cnf , applying a set of local configurations to the global
configuration:

config(κ, ∅) := κ

config((κ1, . . . , κi, . . . , κn), {(i, κ′i)} ∪N) := config((κ1, . . . , κ
′
i, . . . , κn), N)

• nxt : Cnf ×2
⋃

i∈[n]{i}×Cnf i → Cnf , which reflects the impact of mode transitions occurring
in the constituent EDAs, taking the current glocal configuration (first parameter) and
the new local configurations (second parameter) into account. This impact is defined as
follows:

– Each EDA occurring in the set enters the new configuration.

– Next, the impact of the mode transitions on the (direct and indirect) subcompo-
nents of the affected components is determined as follows. Each subcomponent
that is re-activated in the transition (that is, it is inactive in the source mode but
active in the target mode), that does not support mode history (that is, its starting
mode carries the activation attribute), and has no active reactivation transition,
is restarted. This means that it enters its starting mode, and that its data elements
obtain their default values.

Formally, this is described as follows.

nxt(κ,N) := restartκ(config(κ,N))

where

restartκ(κ
′
1, . . . , κ

′
n) := (κ′′1, . . . , κ

′′
n)

with

κ′′i :=

κ
i
0 if i ∈ α(mod(κ′1, . . . , κ

′
n)) \ α(mod(κ)), κi 6⇒i κ

′
i,

mod(κi0) activation mode
κ′i otherwise

Document: SLIM Semantics
Doc ID: –
Author(s): Anonymous

Issue: 2.2
Date: 08-Dec-2014
Page: 17/22

• cnsκ : Cnf → Cnf , making a global configuration consistent by taking the (unique)
solution of the equation system that is implied by the data dependence mapping. In
addition, input or output variables that have been disconnected in the transition (that
is, the variable occurs as a target in the data dependence relation of the old mode but
in no data dependence of the new mode) are reset to their default values:

cnsκ((m1, v1), . . . , (mn, vn)) := ((m1, v
′
1), . . . , (mn, v

′
n))

if, for each i ∈ [n] and x ∈ IX i ∪OX i,

v′i(x) =


JaK(v′j) if DD(m1, . . . ,mn)(i.x) = j.a
vi0(x) if DD(m1, . . . ,mn)(i.x) undefined, DD(mod(κ))(i.x) defined
vi(x) if DD(m1, . . . ,mn)(i.x),DD(mod(κ))(i.x) both undefined

2.2.3 Representing SLIM Specifications as Networks of Event-Data
Automata

We now extend the mapping as introduced in Section 2.1.3 by also taking the activation and
interconnection structures between and inside components into account. To do so, we assume
without loss of generality that the set of control components is given by CCmp = {c1, . . . cn}
with main component c1.

Apart from the activation mapping which can directly be taken from the SLIM specifica-
tion, the essential idea is to analyze the connection and flow structure of event and data ports
in the SLIM specification for generating the corresponding NEDA. For the event part this
means that, for a given global mode of the system, all end-to-end (that is, multistep) connec-
tions between event ports are determined, and are taken into account in the event connection
(EC) mapping. Here the following cases need to be considered:

• multistep out-to-in connections, involving zero or more direct out-to-out, one direct out-
to-in, and zero or more direct in-to-in connections (where the middle step yields the
value of the passive attribute),

• (implicit) event connections between a supercomponent and one of its direct subcompo-
nents,

• multistep in-to-in connections, originating in the main component and involving zero or
more direct in-to-in connections, and

• multistep out-to-out connections, ending in the main component and involving zero or
more direct out-to-out connections.

Note that only the first case can involve passive event port connections.
The data dependence (DD) mapping can directly be determined from the data port con-

nections and flows as defined in the SLIM specification.
Formally, given the collection of components in the SLIM specification S, the association

of a corresponding NEDA,
NS = ((Ai)i∈[n], α,EC ,DD),

can be defined as follows:

Document: SLIM Semantics
Doc ID: –
Author(s): Anonymous

Issue: 2.2
Date: 08-Dec-2014
Page: 18/22

• each Ai := Aci (i ∈ [n]) is constructed as described in Section 2.1.3,

• the activation mapping α : M → 2[n] is derived from Act as follows: for each (m1, . . . ,mn) ∈
M ,

– 1 ∈ α(m1, . . . ,mn) and

– whenever i ∈ α(m1, . . . ,mn), then Act(i,mi) ⊆ α(m1, . . . ,mn),

• for each (m1, . . . ,mn) ∈ M ,

EC (m1, . . . ,mn) :=

{(i.op, j.ip, b) | i, j ∈ [n], op ∈ OE i, ip ∈ IE j, (ci.op, cj.ip) ∈ ECon+}
∪ {(i.(sc.ip), j.ip, false) | i, j ∈ [n], sc ∈ Act(ci,mi), ci.sc = cj, sc.ip ∈ OE i}
∪ {(j.op, i.(sc.op), false) | i, j ∈ [n], sc ∈ Act(ci,mi), ci.sc = cj, sc.op ∈ IE i}
∪ {(1.ip, i.ip ′, false) | i ∈ [n], ip ∈ IE 1, ip

′ ∈ IE i, (c1.ip, ci.ip
′) ∈ ECon∗}

∪ {(i.op ′, 1.op, false) | i ∈ [n], op ∈ OE 1, op ′ ∈ OE i, (ci.op ′, c1.op) ∈ ECon∗}

and

• for each (m1, . . . ,mn) ∈ M , i ∈ [n], and x ∈ IX i ∪OX i,

DD(m1, . . . ,mn)(i.x) :=



j.y if (y, sc.x) ∈ DCon(cj,mj) and cj.sc = ci
or (sc1 .y, sc2 .x) ∈ DCon(ck,mk) and
ck.sc1 = cj, ck.sc2 = ci

or (sc.y, x) ∈ DCon(ci,mi) and ci.sc = cj
i.a if (a, x) ∈ Flw(ci,mi)
undefined otherwise

Here the notation (ci.op, cj.ip) ∈ ECon+ means that, in the global mode (m1, . . . ,mn), there
is a multistep connection from the output port op of component ci to the input port ip of
component cj, in the order

(a) (zero ore more) out-to-out connections,

(b) (exactly one) out-to-in connection, and

(c) (zero ore more) in-to-in connections.

In particular, the Boolean passive attribute b is determined by the connection taken in step
(b).

Similarly, the notations (c1.ip, ci.ip
′) ∈ ECon∗ and (ci.op ′, c1.op) ∈ ECon∗ refer to a (pos-

sibly) empty sequence of in-to-in and out-to-out connections, respectively.

Document: SLIM Semantics
Doc ID: –
Author(s): Anonymous

Issue: 2.2
Date: 08-Dec-2014
Page: 19/22

Chapter 3

Semantics of Error Models

3.1 Additional Semantic Domains

The association between a control component and its error model implementation is given by
the partial mapping

err : CCmp 99K Nam,

as defined in the user interface of the toolset.

3.1.1 Error Types and Implementations

Let r := err(c). Whenever the specification of tp contains

features . . . s: st state; . . .

then
s ∈ Stt(r)

collects the error states of r. If st ∈ {initial, activation}, then

sts(r) := s

denotes the starting state of tp.
Likewise, the incoming and outgoing error propagations of r are collected in the sets

IPrp(r),OPrp(r) ⊆ Ide,

respectively, and again we let Prp(r) := IPrp(r) ∪OPrp(r). Moreover,

Evt(r) ⊆ Ide

contains the error events of r.
With each outgoing error propagation and each error event an occurrence distribution is

associated:
dst(r) : OPrp(r) ∪ Evt(r)→ Dst(Stt(r))

where Dst(Stt(r)) denotes the set of probability distributions over Stt(r).
Finally each error model implementation specifies a set of error transitions

ETr(r) ⊆ Stt(r)× (Evt(r) ∪ Prp(r) ∪ {reset})× Stt(r).

As an abbreviation we allow to access the elements of an error model by the name of the
component using that model, that is, we let Stt(c) := Stt(err(c)) etc.

Document: SLIM Semantics
Doc ID: –
Author(s): Anonymous

Issue: 2.2
Date: 08-Dec-2014
Page: 20/22

3.1.2 Fault Injection

The effect of faults is specified in the user interface by defining failure effects which modify the
nominal behavior of a component in dependence of its error state. This impact, the so-called
fault injection, is defined by a list of assignments to the component’s data elements (which
have to be active in each of its modes) that overrides the nominal transition effects as specified
in Section 1.8 in the presence of an error state. Formally, this yields a failure mapping flr(c, s)
which defines the failure effect for component c ∈ CCmp in error state s ∈ Stt(c) in the form
of assignments to the data elements of c. We assume that flr(c, sts(c)) = ε.

3.2 Model Extension

The integration of the nominal and the error model, the so-called (fault) model extension, works
similarly to the procedure described in [BV07]. It modifies each nominal control component
model for which a (non-trivial) error model is defined by enriching it by the error model
specification, thus producing the extended model which represents both the nominal and the
failure behavior. Informally, the extended model is obtained as follows:

• For each control component in the system, (an instantiation of) the associated error
model is attached as a new system subcomponent to the nominal specification.

• The starting mode of the error subcomponent is defined to be the starting state of
the error model. It is an initial/activation mode if the starting state is of type
initial/activation, respectively.

• Each state transition of the error model gives rise to a mode transition of the error
subcomponent.

• The set of event ports of the nominal model is extended by adding all error propagations
(propagation ports) of the respective error model, in order to simulate the forwarding of
error information via propagations by event communication.

• Correspondingly, the set of event port connections has to be extended by propagation
port connections which support the information flow as described in [COM09, Sct. 4.4].

• The other elements (set of components, component activation, data elements/ports/-
connections, mode invariants, ...) are not affected.

Formally, the extended model is defined by the following modifications. For each c ∈ CCmp,
let r := err(c), let c′ := c.r be the corresponding new subcomponent of c, and let CCmp ′ :=
CCmp∪{c′}. The new component c′ and the modifications of c are formally defined as follows.

• The modes of c′ are exactly the error states of r: Mod ′(c′) := Stt(r);

• its original starting state becomes the starting mode: stm ′(c′) := sts(r);

• error events and propagations of r and the special reset signal are turned into event
ports:

IEPrt ′(c) := IEPrt(c)] IPrp(r),
OEPrt ′(c) := OEPrt(c)]OPrp(r),
IEPrt ′(c′) := IPrp(r)] {reset}, and

OEPrt ′(c′) := Evt(r)]OPrp(r);

Document: SLIM Semantics
Doc ID: –
Author(s): Anonymous

Issue: 2.2
Date: 08-Dec-2014
Page: 21/22

• a new outgoing data port errorState with

typ(c, errorState) := typ(c′, errorState) := enum(Stt(r))

is introduced to notify c about the current error state of c′, and the set of incoming data
ports is preserved:

ODPrt ′(c) := ODPrt(c)] {errorState},
ODPrt ′(c′) := {errorState},

IDPrt ′(c) := IDPrt(c), and
IDPrt ′(c′) := ∅;

• propagation port connections are added to c as new event port connections: for each
m ∈ Mod(c),

ECon ′(c,m) := ECon(c,m)] PCon(c,m)

where propagations for component bindings, from the super- to the subcomponent and
vice versa, and from and to the environment have to be considered:

PCon(c,m) := {(sc1 .p, sc2 .p, false) | (sc2 , sc1) ∈ Acc(c,m) ∪ Acc(c,m)−1 ∪
Run(c,m) ∪ Sto(c,m),

p ∈ OPrp(c.sc1) ∩ IPrp(c.sc2)}
∪ {(r.p, sc.p, false) | sc ∈ Act(c,m), p ∈ OPrp(r) ∩ IPrp(c.sc)}
∪ {(sc.p, r.p, false) | sc ∈ Act(c,m), p ∈ OPrp(c.sc) ∩ IPrp(r)}
∪ {(p, r.p, false) | p ∈ IPrp(r)}
∪ {(r.p, p, false) | p ∈ OPrp(r)}

• the errorState data port connection is added to c: for each m ∈ Mod(c),

DCon ′(c,m) := DCon(c,m)] {(r.errorState, errorState)};

• error state transitions of r are turned into mode transitions of c′, additionally setting
the value of the errorState data port and adding dummy reset transitions if required:
whenever (s, e, s′) ∈ ETr(r) (where s, s′ ∈ Stt(r) and e ∈ Evt(r) ∪ Prp(r) ∪ {reset}),
then

(s, e, true,flr(c, s′); errorState := s′, s′) ∈ MTr ′(c′).

Moreover, for every s ∈ Stt(r) without an outgoing reset transition, the dummy tran-
sition

(s, reset, true, ε, s) ∈ MTr ′(c′)

is added;

• mode transitions in c need to take into account the failure effects. Moreover reset

transitions have to be linked to the error subcomponent, and error event transitions
need to be added in order to immediately apply fault effects:

MTr ′(c) := {(m, p, g ∧ errorState = s,flr(c, s)B f,m′) |
(m, p, g, f,m′) ∈ MTr(c), p ∈ EPrt(c.sc), s ∈ Stt(r)}

∪ {(m, r.reset, g ∧ errorState = s,flr(c, s)B f,m′) |
(m, reset, g, f,m′) ∈ MTr(c), s ∈ Stt(r)}

∪ {(m, r.e, errorState = s,flr(c, s′),m) | (s, e, s′) ∈ ETr(r)}.
Here the notation f1 B f2 refers to the combination of the assignments in f1 and f2,
giving higher priority to those in f1 in case of name clashes.

Bibliography

[BV07] M. Bozzano and A. Villafiorita. The FSAP/NuSMV-SA Safety Analysis Platform.
Int. J. on Software Tools for Technology Transfer, 9(1):5–24, 2007.

[COM09] Model-based analysis and verification: Potential solutions. Technical Note D1-
2, Issue 4.7, COMPASS Project, November 2009. http://compass.informatik.

rwth-aachen.de/internal/doclist/D1/.

[SAE08] Architecture Analysis and Design Language (AADL) V2. SAE Draft Standard
AS5506 V2, International Society of Automotive Engineers, March 2008.

22

