
SLIM 3.0 - Syntax and Semantics

Version 1.2

July 27, 2016

Abstract

This document defines the syntax and semantics of the SLIM 3.0 language.
SLIM 3.0 consolidates previous versions of the language supported in the COM-
PASS family of tools. For a more comprehensive overview on using the SLIM
language guided by examples, please refer to the COMPASS User Manual [RD6].

Contents
1 Introduction 1

2 Concrete Syntax 2
2.1 Grammar Notation . 2
2.2 Property Sets . 3

2.2.1 Property types . 5
2.2.2 Units . 5
2.2.3 Ranges . 5
2.2.4 Property type declarations 6
2.2.5 Property declarations . 6
2.2.6 Property constant declarations 6
2.2.7 Syntactic Restrictions . 6

2.3 SLIM Defined Property Sets . 7
2.4 Properties Association . 8

2.4.1 Syntactic Restrictions . 9
2.5 Data Types . 10

2.5.1 Built-in Data Types . 10
2.5.2 Data component types . 12
2.5.3 Data component implementations 12

2.6 SLIM Expressions . 13
2.6.1 Basic Expressions . 13
2.6.2 Temporal Formulas . 18

2.7 System Specifications . 19
2.8 Constant Declarations . 20
2.9 Component Types . 21

2.9.1 Port Declarations . 22

1

2.10 Component Implementations . 24
2.10.1 Subcomponents and Their Physical Bindings 25
2.10.2 Event Port Connections . 27
2.10.3 Data Flows . 29
2.10.4 Modes, States and Transitions 31

2.11 Overview of Component Restrictions 38
2.12 Error modeling . 40
2.13 Error Model Types . 40
2.14 Error Model Implementations . 41
2.15 Fault Injections . 45

3 Abstract Syntax 47
3.1 Data Types . 47
3.2 SLIM Model . 47

3.2.1 Global Symbols . 47
3.2.2 Component Types . 47
3.2.3 Component Implementations 48
3.2.4 SLIM Model Instance . 49

3.3 Abstract model corresponding to the concrete specification 49
3.3.1 Basic Sets . 49
3.3.2 Data Types . 50
3.3.3 Component Types . 50
3.3.4 Component Implementations 50

3.4 Temporal Formulas . 53
3.5 Model Extension . 54

4 Semantics 59
4.1 Overview . 59
4.2 Formalizing the Local Behavior of Components 59

4.2.1 Event-Data Automata . 59
4.2.2 Semantics of Event-Data Automata 60
4.2.3 Representing the Local Behavior of Component Implementa-

tions as Event-Data Automata 61
4.3 Formalizing the Global Behavior of Systems 63

4.3.1 Networks of Event-Data Automata 63
4.3.2 Semantics of Networks of Event-Data Automata 63
4.3.3 Representing the Global Behavior of Component Implementa-

tions as Networks of Event-Data Automata 65
4.4 Traces . 66

4.4.1 Traces of an EDA . 67
4.4.2 Traces of a Model Instance 67

4.5 Temporal Formulas . 68
4.6 Probabilistic semantics . 68

4.6.1 Maximal Progress . 69

5 Comparison with AADL 70

2

1 Introduction
This document provides the definition of the SLIM syntax and its semantics. It is
meant as a reference on using various syntactic features and their meaning. For an
introduction to the language, please consult the manual and inspect the examples that
are provided with the COMPASS toolset.

The document is structured as follows: First, the concrete syntax is given, which
provides a description, grammar and constraints for the various syntactic features. This
is followed by the abstract syntax, which describes the model that is created by using
the language.

Next, the model extension process is described, based on the description of the
model in the abstract syntax. Model extension is the process of integrating the error
behavior specified in the model into the nominal specification.

Finally, the semantics of the resulting model are discussed. First, the semantics of
individual components specified in the model are presented, followed by the semantics
of the complete model in terms of the network of all (connected) components.

3

2 Concrete Syntax
The following describes the concrete syntax of the SLIM language. SLIM, which is
based on AADL, describes a model in terms of components, which can contain sub-
components and connections to other components, effectively describing a hierarchy
of components.

This description is structured as follows: First, properties and property sets are in-
troduced. These are syntactic structures that can be applied the the various components
and their elements, describing various attributes or parameters of them.

This is followed by a description of SLIM data types and possible expressions over
such data. Data is integral to SLIM’s behavior, as it describes part of the state of the
model. Components of the model can contain data elements, as well as transmit data
via their connections.

Finally, the various elements that make up the structure of the model, in terms of
components and their elements, are presented (see Section 2.7). Globally, a model
consists of a system specification, which is described by packages. Packages contain
component definitions, both their types (interfaces) and implementations. Types are
introduced first, along with the possible elements they may contain (ports). This is
followed by the implementations and their elements (subcomponents, connections and
modes).

Every section describing an aspect of the system specification follows the same
structure: A description; the possible properties that can be applied to the element; the
restrictions that apply to such elements.

2.1 Grammar Notation
The following sections defines the syntax of our specification language. The context-
free part of this syntax is given in (extended) Backus-Naur Form, using the following
notations:

• boldface symbols represent keywords (e.g., package);

• symbols with initial uppercase letters stand for nonterminal symbols (e.g., SystemSpecification);

• symbols with initial lowercase letters represent terminal symbols (e.g., identifier);

• α | β : choice between α and β ;

• {α}: grouping of α;

• [α]: zero or one occurrences of α;

• α∗: zero or more occurrences of α; and

• α+: one or more occurrences of α .

• α | . . . | β : Any literal character in the range between α and β .

Note the distinction between [α], indicating zero or one occurrences of α , and
[α], indicating α between literal brackets. Comments in specifications are started by
a double hyphen (“--”) on any column, and extend to the end of the line ([\r] \n).

4

2.2 Property Sets
SLIM uses the AADL “properties” mechanism to extend the AADL syntax with new
constructs. Property sets allow the definition of properties (as well as property con-
stants and types) that can be used throughout the SLIM model. Predefined property
sets define properties that are used to specify temporal formulas, contracts, and other
construct that change the semantics of the SLIM Model. Although the user can spec-
ify other property sets, only the properties in these predefined sets are interpreted by
COMPASS.

5

PropertySet

::= property set PropertySetIdentifier is
(PropertyType | PropertyDef | PropertyConstant)+

end PropertySetIdentifier ;
PropertyType

::= PropertyTypeIdentifier : type PropertyType;

PropertyDef

::= PropertyIdentifier : PropertyType [=> PropertyValue]
applies to (ElementType {, ElementType}∗) ;

PropertyConstant

::= PropertyConstantIdentifier : constant PropertyType
=> PropertyValue;

PropertyType

::= aadlboolean | aadlstring | PropertyTypeNumeric |
PropertyTypeEnum | PropertyTypeRange | PropertyTypeUnits |
PropertyTypeClassifier | PropertyTypeReference |
PropertyTypeList | PropertyTypeRecord | PropertyTypeIdentifier

PropertyTypeNumeric

::= {aadlinteger | aadlreal} [PropertyNumeric .. PropertyNumeric]
[units {UnitsDesignator | UnitTypeIdentifier}]

UnitsDesignator

::= PropertyTypeIdentifier | UnitsList

PropertyTypeEnum

::= enum (EnumIdentifier {, EnumIdentifier}∗)
PropertyTypeRange

::= range of PropertyTypeNumeric

PropertyTypeClassifier

::= classifier (ComponentCategory {, ComponentCategory}∗)
PropertyTypeReference

::= reference (ElementType {, ElementType}∗)
PropertyTypeUnits

::= units UnitsList

UnitsList

::= (UnitIdentifier {, UnitIdentifier => UnitIdentifier * Number}∗)
PropertyTypeList

::= list of PropertyType

PropertyTypeRecord

::= record ((identifier : PropertyType ;)+)

6

2.2.1 Property types

Various base property types are defined, listed as follows:

• aadlboolean : Boolean type, values are either true or false.

• aadlstring : String type, values are quoted strings.

• aadlinteger : Integer type. Optionally, a unit can be specified, and a range
of allowed values.

• aadlreal : Real (floating point) type. Similar to aadlinteger, but permits
fractions.

• range of : Allows values that specify a range of the numeric type that follows
this type definition.

• enumeration : Enumeration of identifiers.

• reference : Permits values that reference named objects in the component
hierarchy. It can optionally be followed by a list of named element types that are
permitted.

• classifier : Permits values that reference a classifier. It can optionally be
followed by a list of categories of classifier that are permitted.

• list of : A list of a given type, allows list values.

• record : A property record, which allows different named values to be speci-
fied with heterogeneous types.

2.2.2 Units

Units can be specified in property sets, which can be further associated with numeric
values. Units can be specified inline when declaring a numeric type, or can be defined
as a separate type and then referenced by the numeric type (however, using a unit type
on its own is not valid, and always has to be part of a numeric type).

Units are specified with a base unit, following by derived units expressed as the
base unit, or other derived units, multiplied by a constant factor. For instance, a unit to
express distance can be specified using millimeter as a base unit, and other units derived
from it, such as centimeter =>millimeter * 10, meter =>centimeter * 100.

In SLIM, units for time are already predefined (ps, Ns, Ms, Sec, Min, Hr), which
can always be used without having to be qualified.

2.2.3 Ranges

Ranges can be used to specify a specific domain of numeric values. Ranges can be used
as part of a numerical type declaration, limiting the possible values to those included
within the range. Alternatively, a type can be declared that accepts ranges as value. For
a numerical type that has been declared to use a unit, the range should also be expressed
in values using that unit.

7

2.2.4 Property type declarations

A property set allows a named property type to be specified, which can be further
used by properties and property constants. Such types are declared using the type
keyword. A type consists of its identifying name, followed by the type definition (see
the previous Section).

2.2.5 Property declarations

A property declaration defines a new property that can be used in the component hier-
archy. A property is defined by its name, a type, an optional default value and finally
the possible elements the property applies to (which specifies for which elements the
property is allowed to be specified).

2.2.6 Property constant declarations

A property constant is a predefined property value. Such constants are declared by
the constant keyword, followed by the type of the constants and its value. Such
constants can be used whenever a property value is expected of the same type.

2.2.7 Syntactic Restrictions

N-1 The first property set identifier has to match the end property set identifier.

N-2 The type and default value of a property must match.

N-3 The type and default value of a property constant must match.

N-4 Types, constants, property names and enumeration identifiers must be unique.

N-5 All unit identifiers with a property set must be unique.

N-6 Units may not have cyclic definitions

N-7 Numeric types may only refer to a valid unit type.

N-8 Numeric type ranges must match the specified unit.

N-9 Numeric type ranges may not be empty.

N-10 Units of numeric type ranges must match the same unit type.

N-11 Composite property types may not refer to a unit type directly.

N-12 Record field identifiers must be unique.

N-13 Property value ranges must have matching units.

N-14 Property value lists must have a uniform type.

N-15 Property value record identifiers must be unique.

N-16 Modal property values must have a uniform type.

N-17 All property set names declared within a scope have to be unique.

8

2.3 SLIM Defined Property Sets
SLIM predefines two property sets for both specifying special purpose attributes of ele-
ments in the model, as well as specifying formal properties. One is called SLIMpropset
and is used for the extensions to the architectural elements such as ports, and one called
CSSP for the introduction of the Catalogue of System and Software Properties, in-
cluding generic formal properties specified in different logics, contracts specified in a
linear-time temporal logic, patterns of specific properties typically used in system and
software design.

The following is an example of an AADL property used to add the “blocking”
attribute to (event and event data) ports. SLIM further restricts the syntax to use this
attribute only for input ports.

Blocking: aadlboolean => true
applies to (event port, event data port) ;

The following is an example of property defined in the CSSP.

ReactionTime: record (InputPort: aadlstring;
OutputPort: aadlstring;
TimeBound: aadlint;)

applies to (system, process, thread);

SLIMpropset The base SLIM property set is defined by SLIMpropset. It contains
the definitions of the various properties that apply to the elements in the SLIM model.
Inside SLIMpropset, a few special purpose property types are defined:

• SlimExpr: A property type which accepts string values. These string values
are parsed as SLIM expressions and are used for for instance invariants and de-
fault values. See also Section 2.6.1

• ClockTimeUnit: A property type which enumerates the possible time units
for clocks, defined as enum(Milliseconds, Seconds, Minutes, Hours,
Days). See also Section 2.6.1.

• Formula: A property type which accepts string values. These string values are
parsed as Temporal Formulas. See also Section 2.6.2

For the specification of formal properties and contracts, the following properties
have been defined:

• GenericProperty: A property that resembles a generic formal property. It
is defined as a record containing the following fields:

– Name: A string indicating the name of the property;

– Formula: A SLIMpropset::Formula of the formula for the prop-
erty;

– Description: A string with a plain text description for the property.

9

• Contracts: A list of Contract records.

• Contract: A record representing a formal contract. It consists of the following
fields:

– Name: A string indicating the name of the contract;

– Assumption: A SLIMpropset::Formula;

– Guarantee: A SLIMpropset::Formula.

Here, the assumption and guarantee are allowed to refer to the name of a GenericProperty
or a CSSP property.

• ContractRefinements: A list of ContractRefinement records. These
apply to classifiers only.

• ContractRefinement: A record representing a contract refinement. It con-
sists of the following fields:

– Contract: A string indicating the name of the contract being refined;

– Subcontracts: A list of strings referring to the contracts of subcompo-
nents (formatted as SubcomponentName.ContractName);

CSSP The CSSP property set defines various properties and types for the specifica-
tion of formal properties (in various forms) for components and their elements.

2.4 Properties Association
Properties defined in property sets, as well as those predefined in SLIM, can be associ-
ated with various classifiers and named elements defined within classifiers. Properties
can be specified in two ways:

1. As part of a package or classifier in the properties section.

2. As part of a named element between braces (referred to as an in-line property).

In both cases, the property applies either to the element it was defined in, or if the
applies to syntax is used, the owner specified in the applies to specification.
Properties can be overridden by other properties defined on a containing classifier.
For instance, a property defined in a component implementation may override one
defined for a mode, or the property of a subcomponent may override the same one for
a component implementation the subcomponent refers to.

10

Properties

::= properties {PropertyAssoc+ | none}
InlineProperties

::= { PropertyAssoc+ }

PropertyAssoc

::= PropertyIdentifier {=> | +=>} PropertyValue
[applies to Reference [, Reference]+] ;

Reference

::= identifier {. identifier}∗

PropertyValue

::= true | false | PropertyNumeric | String |
EnumIdentifier | ConstantIdentifier | PropertyRange |
PropertyClassifier | PropertyReference |
PropertyList | PropertyRecord

PropertyNumeric

::= Number [UnitIdentifier]

PropertyRange

::= PropertyNumeric .. PropertyNumeric

PropertyClassifier

::= classifier (ComponentClassifier)

PropertyReference

::= reference (NamedElement)

PropertyList

::= (PropertyValue [, PropertyValue]+)

PropertyRecord

::= [(identifier => PropertyValue ;)+]

2.4.1 Syntactic Restrictions

O-1 The type of an assigned property must match its value.

O-2 Assigned properties may only append lists to list valued properties.

O-3 An assigned property may only apply to existing named elements.

O-4 The same component may not assign the same property twice to the same target.

O-5 A property may only be assigned to the category it applies to.

11

2.5 Data Types
2.5.1 Built-in Data Types

Data types for use in the SLIM model are defined by means of data components (com-
ponents of the category data). These data types can be used to specify the data type
of data ports as well as data subcomponents. These data can then be used in SLIM ex-
pressions (see Section 2.6.1). Some data types are predefined (built-in). The following
grammar shows how data types may be specified with SLIM for elements which expect
a type.

DataType

::= DataComponentIdentifier | enum(EnumIdentifierList) |
[ConstantValue..ConstantValue] | (DataType{,DataType}+)

DataComponentIdentifier

::= identifier

EnumIdentifierList

::= EnumIdentifier {,EnumIdentifier}∗

EnumIdentifier

::= identifier

The following data types are predefined in SLIM in the SLIMdatatypes pack-
age, though they do not have to be qualified:

• bool: Boolean values, with constants true and false;

• clock: for data components whose values (in R≥0) linearly increase over time,
with non-negative real constants (see below);

• continuous: for data components whose values (in R) change continuously
in time;

• enum: enumeration of abstract values, specified as enum(id1, . . .,idn) where
n≥ 1 and each idi is a distinct identifier;

• int: integer values (in Z = {0,1,−1, . . .}), with constants of the form [-]{0 |
. . . | 9}+;

• real: floating-point values with discrete value changes, with constants of the
form [-]{0 | . . . | 9}+[.{0 | . . . | 9}+].

For all of these except clocks, default values can be defined. Clocks are different
from usual data elements as their access is limited: they are always initialized with a
zero value, may only be compared to a constant, and reset to zero. Similar restrictions
apply to continuous data components. Details are explained in Section 2.10.4.

12

For the predefined data types, SLIM specifies the domain of possible values that
may be used inside SLIM expressions (see Section 2.6.1). These domains are defined
as follows:

• true and false match bool;

• each of the symbolic identifiers declared in an enum type matches that type;

• each z ∈ Z matches int, real, and every range type [l..u] such that l ≤ z≤
u;

• each r ∈ R matches real; and

• (c0, . . . , cn−1) matches (τ0, . . . , τn−1) whenever c0 matches τ0, and c1 matches
τ1, etc., up to n−1, where n≥ 1.

Time scales The system specification may make use of time scales, which allow time
to be expressed using a unit such as seconds or hours. The use of time scales is optional,
however if one part of the system specification uses time scales, the entire system must
be specified using time scales. When using time scales, it is not possible to directly mix
timed (i.e. clock) types with untimed types. Instead, they can be converted from and
to these domain by means of unary time scale operators in expressions. Furthermore, in
case time scales are used, clock data types have to be specified using a TimeUnit.
The TimeUnit property can be specified to indicate in what time unit the clock value
is represented (defaults to Seconds for models using time scales).

Properties When specifying a data type, the following properties are applicable to
the element that the data type is defined for (i.e. components of category data, as well
as data ports):

• Default: A property that accepts values of type SlimExpr, which must be a
constant value and adhere to the ConstantExpression syntax, see Section 2.6.1.
This property defines the default value for the element it is defined for. Default
values cannot be specified for clock s, which are implicitly initialized to 0.

• TimeUnit: A property that accepts a value of the ClockTimeUnit enumer-
ation. When using time units in the SLIM model, this property must be defined
for clock data types (it has no meaning for other types). By default it is set to
Seconds.

Syntactic Restrictions

C-1 All symbolic identifiers declared in an enum type have to be distinct.

C-2 In an integer range type of the form [v1..v2], both v1 and v2 must be integer
numerals or value constant identifiers (see Section 2.8) of that type, and v1 < v2
must hold.

13

2.5.2 Data component types

Further data types can be specified by means of declaring a data component type. Such
a data component identifies a new data type (which can be used by data ports and data
subcomponents). Using a data component type directly implies the use of an abstract
data type. Such a type represents an unknown, arbitrary value domain.

DataComponentType

::= data DataComponentTypeIdentifier
end DataComponentTypeIdentifier;

DataComponentTypeIdentifier

::= identifier

Syntactic Restrictions

L-1 All data component type names declared within a scope have to be distinct.

L-2 The first data component type identifier has to match the end data component
type identifier.

2.5.3 Data component implementations

A data component implementation can be used to specify composite types. A data
component implementation may specify data subcomponents which specify the types
this data component implementation is composed of (specifying no subcomponents
defines the data component implementation to be of an abstract type). Composed data
types are treated as tuples of such types.

DataComponentImplementation

::= data implementation DataComponentImplName
[subcomponents DataSubcomponent+]

end DataComponentImplName;
DataComponentImplName

::= DataComponentTypeIdentifier.DataComponentImplIdentifier

DataComponentImplIdentifier

::= identifier

DataSubcomponent

::= SubcomponentIdentifier: data DataType ;

14

Syntactic Restrictions

M-1 All data component implementation names declared within a scope have to be
distinct.

M-2 The first identifier of each declared data component implementation name must
refer to a component type that is declared within the same scope.

M-3 All data subcomponent identifiers must be unique within a data component im-
plementation.

M-4 A data subcomponent may not specify a type that (recursively) contains itself.

M-5 The first data component implementation identifier has to match the end data
component implementation identifier.

Syntactic Restrictions

M-1 All data component implementation names declared within a scope have to be
distinct.

M-2 The first identifier of each declared data component implementation name must
refer to a component type that is declared within the same scope.

M-3 All data subcomponent identifiers must be unique within a data component im-
plementation.

M-4 A data subcomponent may not specify a type that (recursively) contains itself.

M-5 The first data component implementation identifier has to match the end data
component implementation identifier.

2.6 SLIM Expressions
2.6.1 Basic Expressions

Throughout the SLIM model, expressions may be used to read and manipulate data.
The following tables list the operators that can be used to form larger expressions from
basic data elements. Note that these operators are only defined for the predefined data
types, and types composed of predefined data types.

Here RNum stands for {clock,continuous,real}, and Range stands for an
arbitrary integer range.

Note that it is not possible to mix integer, integer range and real values as operands.
As integer constants (see above) can represent both a standard integer and an element
of a range, their type (int or Range) depends on the context in which they occur.

Expressions are considered to be constant, i.e. a ConstantExpression, if it does not
contain any variable data. Possible variable data are listed in the expression grammar
under the rule VariableExpression.

15

Expression

::= Expression BinaryOperator Expression |
UnaryOperator Expression | Expression TimeScaleOperator |
case Expression : Expression {; Expression : Expression}∗
otherwise Expression end

TupleExpression | VariableExpression | ConstantExpression
(Expression)

TupleExpression

::= (Expression {, Expression}+) |
Expression[ConstantExpression]

VariableExpression

::= DataPortIdentifier | DataComponentIdentifier |
data(EventDataPortIdentifier) |
FunctionConstantClassifier (Expression {, Expression}+) |

ConstantExpression

::= true | false | number | EnumIdentifier | ValueConstantClassifier

Arithmetic Operators Table 1 lists the supported arithmetic operators. Here τ1,τ2 ∈
RNum, and the maximum type max{τ1,τ2} is understood with respect to the order
real<clock<continuous. Thus, e.g., + :real×real→real, + :real×
clock→ clock, and + : continuous×clock→ continuous.

When the system specification includes time scales, binary operators are not sup-
ported that include clock s and other types. Such operators are marked with T̄ in the
following tables.

Relational Operators Table 2 lists the supported relational operators. Here again
τ1,τ2 ∈ RNum, and only values of the the same enum type can be compared using =
and !=.

Boolean Operators Table 3 lists the supported Boolean operators.

case Operator The case operator is a special construct which is used in expres-
sions of the form

case b1:e1; . . .;bn:en otherwise e0 end

where n≥ 1 and every bi is a bool-valued expression. It returns the value of the first
expression ei such that bi is true. If no such i exists, it returns the value of e0. Table 4
lists the supported types. Here n ≥ 1 and τ0,τ1, . . . ,τn ∈ RNum. In the last row, all
enum values must be of the same type.

16

Operator Type Meaning
+ int×int→ int Integer addition

Range×Range→ Range Range addition
τ1× τ2→max{τ1,τ2} Real additionT̄

- int×int→ int Integer subtraction
Range×Range→ Range Range substraction

τ1× τ2→max{τ1,τ2} Real subtractionT̄

- int→ int Unary integer minus
Range→ Range Unary range minus
real→ real Unary real minus

clock→ clock Unary clock minus
continuous→ continuous Unary continuous minus

* int×int→ int Integer multiplication
Range×Range→ Range Range multiplication

τ1× τ2→max{τ1,τ2} Real multiplication
/ int×int→ int Integer division

Range×Range→ Range Range division
τ1× τ2→max{τ1,τ2} Real division

mod int×int→ int Integer modulo
Range×int→ Range Range modulo

Table 1: Arithmetic Operators

Time scales The system specification may make use of time scales, which allow time
to be expressed using a unit such as seconds or hours. The use of time scales is optional.
However, if one part of the system specification uses time scales, the entire system must
be specified using time scales. When using time scales, it is not possible to directly mix
timed (i.e. clock) types with untimed types. Instead, they can be converted from and
to these domain by means of unary time scale operators in expressions. Furthermore,
in case time scales are used, clock data types have to be specified using a TimeUnit.

Timescale Operators Table 5 lists the supported timescale operators. Here τ ∈
{int,real,continuous}.

Tupling Operators SLIM supports the aggregation of data by introducing Cartesian
products in the form of tuples, written as (x0, . . .,xn) for tuples x0 through xn of
respective discrete data types τ0 through τn, and corresponding projections. These
projections satisfy the following equation:

(x0, . . . ,xn)[i] = xi

In the projection, the index (between brackets) must be an integer constant i such
that 0≤ i≤ n.

17

Operator Type Meaning
= bool×bool→ bool Equivalence

int×int→ bool Integer equality
Range×Range→ bool Range equality

τ1× τ2→ bool Real equalityT̄

enum×enum→ bool Enumeration equality
!= bool×bool→ bool Exclusive disjunction

int×int→ bool Integer inequality
Range×Range→ bool Range inequality

τ1× τ2→ bool Real inequalityT̄

enum×enum→ bool Enumeration inequality
< int×int→ bool Strictly less on integer

Range×Range→ bool Strictly less on ranges
τ1× τ2→ bool Strictly less on realT̄

> int×int→ bool Strictly greater on integer
Range×Range→ bool Strictly greater on ranges

τ1× τ2→ bool Strictly greater on realT̄

<= int×int→ bool Less or equal on integer
Range×Range→ bool Less or equal on ranges

τ1× τ2→ bool Less or equal on realT̄

>= int×int→ bool Greater or equal on integer
Range×Range→ bool Greater or equal on ranges

τ1× τ2→ bool Greater or equal on realT̄

Table 2: Relational Operators

Operator Precedence The precedence of operators is defined by the following list
(from higher to lower precedence). In addition, parentheses (“(”, “)”) can be used to
override the standard precedences.

1 not, - (unary minus)
2 msec, sec, min, hour, day
3 *, /, mod
4 +, - (subtraction)
5 <, <=, >, >=, =, !=
6 and
7 or, xor, xnor
8 iff
9 imp, implies

10 case

Syntactic Restrictions

C-3 The operator tables define the allowed typing of expressions.

C-4 All subexpressions involving data variables of type int, Range, real, clock

18

Operator Type Meaning
and bool×bool→ bool Conjunction
iff bool×bool→ bool Biconditional
imp or implies bool×bool→ bool Implication
not bool→ bool Negation
or bool×bool→ bool Disjunction
xnor bool×bool→ bool Negated exclusive disjunction
xor bool×bool→ bool Exclusive disjunction

Table 3: Boolean Operators

Operator Type Meaning
case (bool×bool)+×bool→ bool Boolean case

(bool× τ1)× . . .×
(bool× τn)× τ0

→max{τ0,τ1,
. . . ,τn}

Numerical case (result
type is the largest nu-
merical class of all sub-
expressions)

(bool×enum)+×enum→ enum Enumeration case

Table 4: case Operator

and continuous must be linear. Thus, expressions involving the multiplica-
tion or division of two variables with these types are not allowed, nor expressions
where the denominator of a division is a variable with these types. This restric-
tion allows the reasoner to exploit efficient linear-constraint solvers.

C-5 The data() operator may only appear in assignment expressions of state tran-
sitions and may only refer to an input event data port if it is the trigger of that
transition, see Section 2.10.4.

C-6 The value i of the tuple projection operator must lie within 0≤ i < n, where n is
the arity of the tuple.

19

Operator Type Meaning
msec τ → clock Convert value to time in milliseconds
sec τ → clock Convert value to time in seconds
min τ → clock Convert value to time in minutes
hour τ → clock Convert value to time in hours
day τ → clock Convert value to time in days
msec clock→ τ Convert time to a value in milliseconds
sec clock→ τ Convert time to a value in seconds
min clock→ τ Convert time to a value in minutes
hour clock→ τ Convert time to a value in hours
day clock→ τ Convert time to a value in days

Table 5: Timescale Operators

Operator Type Meaning

(., . . .,.) τ0×·· ·× τn→
τ0× . . .
×τn

Constructing tuple

.[.] (τ0×·· ·× τn)×int→ τi Projection for position i

Table 6: Tupling Operators

2.6.2 Temporal Formulas

TemporalFormula

::= AtomicFormula |
not TemporalFormula |
TemporalFormula and TemporalFormula |
TemporalFormula or TemporalFormula |
TemporalFormula {implies|imp} TemporalFormula |
always TemporalFormula |
never TemporalFormula |
in the future TemporalFormula |
TemporalFormula until TemporalFormula |
in the past TemporalFormula |
TemporalFormula since TemporalFormula;

AtomicFormula

:= Expression |
time_until(Expression) |
next(Expression) |
last_data(identifier);

20

Syntactic Restrictions

Q-1 The type of expressions used as atomic formulas must be Boolean.

2.7 System Specifications
A system specification consists of a sequence of package specifications and part dec-
larations. A package is a named grouping of declarations that can be used to organize
specifications by establishing distinct namespaces. It is divided into public and pri-
vate segments. Declarations in the public segment are visible also outside the package
whereas declarations in the private segment are visible only within the package. To
reference an element in the public segment from outside a package, its name has to be
prefixed by the package identifier (separated by double colons “::”).

A constant declaration (cf. Section 2.8) introduces a constant identifier that rep-
resents a (discrete, possibly uninterpreted) data type, an uninterpreted function, or a
constant value. A component defines the type or an implementation of a component
(cf. Section 2.9). It is possible to declare multiple implementations of a component.

SystemSpecification

::= {PackageSpecification | PartDeclaration}+

PackageSpecification

::= package PackageIdentifier
public PartDeclaration+

[private PartDeclaration+]
[Properties]

end PackageIdentifier;
PackageIdentifier

::= identifier

PartDeclaration

::= ConstantDeclarations | ComponentDeclaration | ErrorDeclaration

ComponentDeclaration

::= ComponentType | ComponentImplementation

ErrorDeclaration

::= ErrorType | ErrorImplementation

Later we will use the notion of scopes, which is defined as follows:

• The list of declarations outside any package forms a scope.

• Each single package forms a scope.

Properties When specifying a package, the following properties are applicable:

21

• Constants: A property that accepts an aadlstring formatted according to
the grammar given in Section 2.8. If specified, this property defines the constants
that are available inside the package.

Syntactic Restrictions

A-1 Keywords are not allowed in identifier positions.

A-2 All package identifiers declared in a system specification have to be distinct.

A-3 Cross-references between the public and the private part of the same package
are not admitted, that is, a public component implementation may not imple-
ment a private component type, and a private component implementation may
not implement a public component type.

A-4 The first package identifier has to match the end package identifier.

2.8 Constant Declarations
SLIM allows the definition of constant values and (uninterpreted) function for use in
data expressions. These constants can be specified by the Constants property inside
a package. These constants are then made available for this package. The following
grammar specifies the syntax that is used inside the string value of the property.

ConstantDeclarations

::= constants ConstantDeclaration+

ConstantDeclaration

::= FunctionConstantDeclaration | ValueConstantDeclaration

FunctionConstantDeclaration

::= FunctionConstantIdentifier: function
DiscreteDataType {,DiscreteDataType}∗ -> DiscreteDataType;

FunctionConstantClassifier

::= [PackageIdentifier::] FunctionConstantIdentifier

FunctionConstantIdentifier

::= identifier

ValueConstantDeclaration

::= ValueConstantIdentifier: DiscreteDataType := ConstantExpression;

ValueConstantClassifier

::= [PackageIdentifier::] ValueConstantIdentifier

ValueConstantIdentifier

::= identifier

22

Syntactic Restrictions

P-1 All declared value constants have to be distinct.

P-2 The definition of a value constant may only refer to other declared value con-
stants.

P-3 Declarations of value constant identifiers must not be recursive.

P-4 In each value constant declaration, the constant value must match the data type
declared for the value constant identifier.

2.9 Component Types
A component type declaration gives the category of the component and establishes its
externally visible characteristics, against which other components can operate. Each
implementation of the component is required to satisfy this declaration. Interface fea-
tures are ports along which information can be exchanged between components.

ComponentType

::= ComponentCategory ComponentTypeIdentifier
[features ComponentFeatures]
[Properties]

end ComponentTypeIdentifier;
ComponentTypeIdentifier

::= identifier

ComponentCategory

::= SoftwareCategory | HardwareCategory | CompositeCategory | abstract
SoftwareCategory

::= data | process | thread
HardwareCategory

::= bus | device | memory | network | processor
CompositeCategory

::= node | subject | system
ComponentFeatures

::= PortDeclaration+

Properties For component types the following properties are defined:

• FDIR: A boolean property indicating the component type is an FDIR compo-
nent.

• Various properties to specify formal properties and contracts, see Section 2.3

23

Syntactic Restrictions

B-1 All component type identifiers declared within a scope have to be distinct.

B-2 Component types of category data cannot be declared.

B-3 The first component type identifier has to match the end component type identi-
fier.

B-4 A component type with the FDIR property set true can only be associated to
component implementations with the FDIR property set true.

B-5 The Blocking property can apply only to input event or event data ports.

B-6 Any identifier in the temporal formulas declared in a formal property of compo-
nent type (either a generic property or an assumption or a guarantee of a contract)
identifies a port of the same component type.

B-7 The assumption and guarantee of a contract must be either the identifier of a
formal property of the same component type or a temporal formula.

B-8 The Identifier used in the declaration of CSSP::Function must be an output data
or event data port.

B-9 The Term used in the declaration of a CSSP::Function must have the same type
of the output port referred by the property.

2.9.1 Port Declarations

A port represents a communication interface for the directional exchange of event
and/or data information between components. Ports are classified as

• event port: interfaces for the instantaneous (i.e., message-like) communi-
cation of events raised by threads, processes, devices, or composite components;
or

• data port: interfaces for the continuous transmission of typed state data
among components; or

• event data port: interfaces for instantaneous communication of typed
state data among components.

Ports are directional: an in (out) port represents a component’s input (output). Data
ports of an analogue type (that is, clock or continuous) are not supported. Not all
component categories feature ports; Section 2.11 gives the corresponding restrictions.
To support FDIR analysis, outgoing data ports of type bool of FDIR components
can be tagged with the Alarm property, and outgoing data ports of non-FDIR com-
ponents can be tagged with the Observable property. Incoming event ports that
have the property Blocking set to false never block the communication, see also
Section 4.2.2.

24

PortDeclaration

::= EventPortDeclaration | DataPortDeclaration |
EventDataPortDeclaration

EventPortDeclaration

::= EventPortIdentifier: {in | out} event port [InlineProperties];

DataPortDeclaration

::= DataPortIdentifier: {in | out} data port
DiscreteDataType [InlineProperties];

EventDataPortDeclaration

::= EventDataPortIdentifier: {in | out} event data port
DiscreteDataType [InlineProperties];

EventPortIdentifier

::= identifier

DataPortIdentifier

::= identifier

EventDataPortIdentifier

::= identifier

Properties For ports the following properties are defined:

• Alarm: A Boolean property that indicates that the port is an alarm for FDIR
analysis.

• Observable: A Boolean property that indicates that the port is an observable
parameter.

• Blocking: A Boolean property that indicates if the port is blocking. It can
only be defined for in event data and in event ports. By default the
value is true for components specifying states (see Section 2.10.4), and false
otherwise.

• Default: See Section 2.5.

• CSSP properties that are applicable to ports, see also Section 2.3

Syntactic Restrictions

D-1 Section 2.11 specifies which component categories support the declaration of
ports.

D-2 All (event or data) port identifiers declared within a component type have to be
distinct.

25

D-3 The type of each default value, if given, must match the data type of the respec-
tive data port.

D-4 The symbolic identifiers of all enum types used in a component type declaration
have to be distinct from the data port identifiers declared in that component type.

D-5 The Observable property is only supported for outgoing data ports of non-
FDIR components.

D-6 The Alarm property is only supported for outgoing data ports of type bool of
FDIR components.

2.10 Component Implementations

ComponentImplementation

::= ComponentCategory implementation ComponentImplName
[subcomponents Subcomponents]
[connections {EventPortConnections | DataFlows}]
[modes Modes [transitions ModeTransitions]]
[Properties]

end ComponentImplName;
ComponentImplName

::= ComponentTypeIdentifier.ComponentImplIdentifier

ComponentImplIdentifier

::= identifier

Properties For component types the following properties are defined:

• FDIR: A boolean property indicating the component implementation is an FDIR
component.

• The properties to specify formal properties and contracts as defined in Sec-
tion 2.3

Syntactic Restrictions

E-1 All component implementation names declared within a scope have to be dis-
tinct.

E-2 The component type identifier of each declared component implementation name
must refer to a component type that is declared within the same scope.

E-3 The component category given in the component implementation must match the
component category as specified in the corresponding component type.

26

E-4 The type of a component implementation that has the FDIR property set to true
must also have the FDIR property set to true.

E-5 The first component implementation name has to match the end component im-
plementation name.

E-6 Any identifier in the temporal formulas declared in a component implementation
identifies a port of the corresponding component type or a port of a subcompo-
nent.

E-7 The contract identifier used in a contract refinement must refer to a contract name
declared in the component type.

E-8 The identifiers of subcontracts in a contract refinement must refer to a contract
name of the component type of the corresponding subcomponent.

2.10.1 Subcomponents and Their Physical Bindings

Components may be hierarchically decomposed into collections of interacting subcom-
ponents. This is specified in the subcomponents part of the component implementa-
tion where the implementation structure of the component is defined as an assembly of
subcomponent implementations. If a component c introduces a subcomponent c′, then
c is called the supercomponent of c′. The subcomponents of a common supercom-
ponent are called neighbour components. If a subcomponent has only one associated
implementation, then it suffices to give its type in the subcomponent declaration.

For data subcomponents, the data types described in Section 2.5 are allowed. If a
component contains only data (or no) subcomponents, it is called atomic, otherwise
non-atomic. For all data subcomponents except those of type clock, default values
can be defined by means of the Default property.

Moreover physical bindings between the subcomponents can be established. The
following kinds of bindings are supported:

• a process is stored in memory and running on a processor;

• a bus, memory, processor component, device or composite component accesses
a bus;

These bindings are specified by means of the properties StoredIn, RunningOn and
Accesses.

The activation of a subcomponent can depend on the mode of the component, thus
supporting the specification of different system configurations at runtime. See Sec-
tion 2.10.4 for details.

27

Subcomponents

::= Subcomponent+

Subcomponent

::= DataSubcomponent | OtherSubcomponent

DataSubcomponent

::= SubcomponentIdentifier: data DataType [InModes] [InlineProperties];

SubcomponentIdentifier

::= identifier

OtherSubcomponent

::= SubcomponentIdentifier: ComponentCategory ComponentClassifier
[InModes] [InlineProperties] ;

ComponentClassifier

::= [PackageIdentifier::]
ComponentTypeIdentifier[.ComponentImplementationIdentifier]

Properties For subcomponents the following properties are defined:

• Default: For data subcomponents, see Section 2.5.

• Accesses: A list of bus subcomponent references that this subcomponent ac-
cesses

• StoredIn: A memory subcomponent reference that this subcomponent is stored
in

• RunningOn: A processor subcomponent reference that this subcomponent runs
on

Syntactic Restrictions

F-1 All declared subcomponent identifiers have to be distinct.

F-2 In the second type of subcomponent declaration (OtherSubcomponent), ComponentCategory
must not be data, and ComponentClassifier must refer to the name of a declared
component type or implementation.

F-3 The component category given in a subcomponent declaration must match the
component category as specified in the corresponding component implementa-
tion.

F-4 Section 2.11 specifies the possible subcomponent categories for each component
category.

28

F-5 For all data subcomponents except those of type clock, default values have to
be defined.

F-6 Clocks must not be assigned default values.

F-7 Every default value must match the data type of the respective subcomponent.

F-8 In case of a bus-to-bus binding, the referred component has to be different from
the referring one.

F-9 Whenever a subcomponent c1 is bound to a subcomponent c2, c2 has to be active
in each mode where c1 is active.

F-10 If given, all identifiers in an in modes list must be distinct, and must refer
to modes as declared in the modes part of the component implementation (see
Section 2.10.4).

F-11 The component hierarchy must not be recursive, that is, no component imple-
mentation can have itself as an (indirect) subcomponent.

F-12 For each component implementation, the identifiers of all data subcomponents
have to be distinct from all data ports declared in the corresponding type specifi-
cation.

F-13 The value identifiers of all enum types used in a component type or implemen-
tation have to be distinct from all data port, and data subcomponent identifiers of
that component.

2.10.2 Event Port Connections

Representations of the interactions among components are restricted to defined rela-
tions established between interface elements, i.e., event ports, data ports and event data
ports (see Section 2.9.1). With regard to the first two kinds of ports, event port connec-
tions and event data port connections establish directed interactions between the event
ports of components. We distinguish the following types of connections:

• in-to-in: from an incoming event port of a component to an incoming event port
of one of its subcomponents,

• out-to-out: from an outgoing event port of a component to an outgoing event
port of its supercomponent, and

• out-to-in: from an outgoing event port of a component to an incoming event port
of one its neighbor components.

Note that this excludes in-to-out connections and connections from a component to
itself.

Moreover, not all component categories support ports (cf. Section 2.11). Addition-
ally, introducing out-to-in connections between hardware and composite components
requires a physical coupling between those components, which further restricts the

29

possible topology of such connections: for processes, a connection to a processor or
memory component is only allowed if it is bound to that component.

The presence of a connection can depend on the mode of the component, thus sup-
porting the specification of different connection topologies at runtime. If the in modes
clause is not present, the connection is implicitly declared to be active in all modes of
the respective component. See Section 2.10.4 for details.

Event ports and event data ports support fan-in and fan-out, that is, the same event
port can respectively be the target and source of several connections (even in the case
where these are simultaneously active). In the case of fan-out, it is not allowed to have
pairs of connections that go from the same event port of one component to (differ-
ent) event ports of another component, and that are active in the same mode. More
concretely, this excludes the following cases:

• Declarations of in-to-in connections of the form

port p -> c.p1 in modes(. . . ,m, . . .);

where p is an incoming event port of the current component, and c is a subcom-
ponent with incoming event ports p1 and p2;

• declarations of out-to-in connections of the form

port c.p -> c′.p1 in modes(. . . ,m, . . .);

where c and c′ are (different) subcomponents of the current component with
outgoing event port p and incoming event ports p1 and p2, respectively; and

• declarations of out-to-out connections of the form

port c.p -> p1 in modes(. . . ,m, . . .);

where c is a subcomponent with outgoing event port p, and p1 and p2 are outgo-
ing event ports of the current component.

EventPortConnections

::= {EventPortConnection | EventDataPortConnection}+

EventPortConnection

::= port EventPortReference -> EventPortReference
[InModes] [InlineProperties] ;

EventPortReference

::= [SubcomponentIdentifier.] EventPortIdentifier

EventDataPortConnection

::= port EventDataPortReference -> EventDataPortReference
[InModes] [InlineProperties] ;

EventDataPortReference

::= [SubcomponentIdentifier.] EventDataPortIdentifier

30

Syntactic Restrictions

G-1 For each event port connection, the subcomponent identifiers referred in that
connection must exist in the component implementation in which the port con-
nection is defined.

G-2 For each event port connection, both the source and the target port must be de-
clared in the respective component type as event ports, and the source and the
target component must be different.

G-3 The topological restrictions as specified in the beginning of this section apply (in
particular related to process bindings).

G-4 If given, all identifiers in the in modes list must be distinct, and must refer
to modes as declared in the modes part of the component implementation (see
Section 2.10.4).

G-5 For each mode in which a connection is active, the subcomponents that are ref-
erenced in the source and the target port must also be active in that mode.

G-6 Fan-out of event ports to the same component is disallowed, meaning pairs of
jointly active connections that go from the same outgoing event port of one com-
ponent to (different) event ports of another component.

G-7 Each output event and event data port of a non-atomic component must be con-
nected by some out-to-out connections (output events must be generated by some
subcomponents).

G-8 For each in-to-in connection, the two connected input event (data) ports must
have the same value of the blocking property.

2.10.3 Data Flows

We now define data flows to model immediate propagation of data among components.
While in an event connection, the data of the receiver is updated after a transition fired
be the event, a flow introduces a value update of a port that is an immediate reaction to
an update of (one or more) other ports. More concretely, flows are specified similarly
to event port connections where the source part is now an expression over

• incoming data ports of the current component and

• outgoing data ports of its subcomponents

and the target part is

• an outgoing data port of the current component or

• an incoming data port of one of its subcomponents

such that the type of the source expression equals that of the target port.
Thus data flows generalize event port connections in several ways as they

31

• support in-to-out dependencies (from an incoming to an outgoing data port of
the current component),

• allow a target data port to depend on more than one source data port, and

• can modify forwarded values rather than just copy them.

On the other hand, similar restrictions regarding the physical coupling between
hardware and composite components apply (cf. Section 2.11). To reiterate, for pro-
cesses a connection to a processor or memory component is only allowed if it is bound
to that component.

Just like an event port connection, the presence of a flow can be made dependent
on the mode of the component using an in modes clause. If it is absent, the flow is
implicitly declared to be active in all modes of the component. Another similarity is the
support for fan-out: the same data port is allowed to occur in the source expression of
several flows. On the other hand, every (incoming or outgoing) data port is restricted to
a single incoming flow in each mode. (It cannot have a “fan-in” from different sources
as its value would not be well-defined in this case.)

DataFlows

::= DataFlow+

DataFlow

::= port FlowExpression -> DataPortReference
[InModes] [InlineProperties];

FlowExpression

::= Expression

DataPortReference

::= [SubcomponentIdentifier.] DataPortIdentifier

Here the symbol FlowExpression refers to a SLIM expression of which the allowed
variables are limited to DataPortReference, see also Section 2.6.1.

Syntactic Restrictions

H-1 For each data flow, the subcomponent identifiers referred in that flow must exist
in the component implementation in which the port connection is defined.

H-2 The source part of each flow must be a well-typed expression over incoming data
ports of the respective component and outgoing data ports of its subcomponents.

H-3 The target port of each flow must be an outgoing data port of the respective
component or an incoming data port of one of its subcomponents.

H-4 For each flow, the type of the source expression must be equal to that of the target
port.

32

H-5 If given, all identifiers in the in modes list must be distinct, and must refer
to modes as declared in the modes part of the component implementation (see
Section 2.10.4).

H-6 For each mode in which a flow is active, the subcomponents that are referenced
in the source and the target port must also be active in that mode.

H-7 In each component implementation, an outgoing data port is allowed to occur
either on the left-hand side of mode transition assignments (Section 2.10.4) or as
a target port in flows, but not both.

H-8 For each mode of a component, every data port is allowed to occur at most once
as a target port in all flows that are active in that mode (no fan-in for data ports.)

H-9 To exclude undefined values of an incoming data port p of a subcomponent c, in
each mode of every component that uses c as a subcomponent, p must occur as
the target port of a flow.

H-10 The union of the dependency relations between all data ports of the overall sys-
tem which is imposed by data flows over all modes of each component has to be
acyclic.

H-11 The topological restrictions as specified in the beginning of this section apply (in
particular related to process bindings).

2.10.4 Modes, States and Transitions

A component may specify either modes or states to specify different system configura-
tions or behavior respectively. They may not be mixed however, and states are allowed
only to be specified for atomic components (that is, those without subcomponents).

Modes In our modeling approach, modes can be attached to non-data components.
They can be employed to specify different system configurations and connection topolo-
gies at runtime, allowing to model dynamic reconfiguration within the context of a
non-atomic component in response to external events.

Each model specification must declare exactly one initial or activation
mode. In the first case, the component starts its execution in that mode only in the
beginning of system execution, that is, when the component is activated for the first
time. After its de- and re-activation (see the explanations on system reconfiguration in
the next section), execution is resumed in the previous mode, that is, mode history is
supported. In the second case, the component’s execution is started in the given mode
after each activation. Data subcomponents and outgoing data ports of the component
are handled in a similar way: if an initial mode is specified, their values are preserved
during deactivation; with an activation mode, they are reset to their default values (if
defined) upon each (re-)activation.

33

Mode Transitions Transitions between modes are of the general form Transitions
between modes are of the general form

m1 -[e]-> m2

where m1 and m2 are modes and e is a trigger event for the transition. To define a
transition that applies to every mode of the component, the wildcard symbol * can be
used in place of the source mode.

Mode transitions can be triggered by incoming events arriving at ports, either ex-
ternally from an input port or from a subcomponent’s output port. A nondeterministic
choice between different input triggers can be specified using the keyword or.

In addition it is possible to associate a guard with a mode transition using the
Guard property. A guard is a logical expression over data ports of the respective
component which additionally enables or disables a transition.

A special type of reactivation transition can be specified by using the special trigger
@activation. Such a transition is taken upon reactivation of a component after it
had been deactivated before. Nondeterminism is allowed. In the case an activation
mode is specified, these transitions take precedence. That is, if the current mode is
the source mode of an reactivation transition, then this transition is taken, regardless
whether an initial or activation mode is specified. After activation, the mode
will be set to the target mode of this transition.

Modes

::= Mode+

Mode

::= ModeIdentifier: [{initial | activation}] mode [InlineProperties];

ModeIdentifier

::= identifier

ModeTransitions

::= ModeTransition+

ModeTransition

::= SourceMode -[Trigger {or Trigger}∗]-> ModeIdentifier
[InlineProperties];

SourceMode

::= ModeIdentifier | *
Trigger

::= EventPortReference | @activation
ModeGuard

::= Expression

InModes

::= in modes (ModeIdentifier {;ModeIdentifier}∗)

34

States States provide an abstraction of the concrete behavior of a component, con-
stituting an automata-like formalism for modeling finite state spaces of components.
This applies only to atomic components, and is not possible for composite components
(those with subcomponents). Similar to modes, at least one initial or activation
state has to be declared.

Linear conditions on the values of the clocks can be attached to both states and state
transitions. In the first case, they act as state invariants which constrain the amount of
time that may be spent in a location. In the second case, they represent state transition
guards that enable or disable a state transition (see below).

Similar restrictions apply to continuous data components. Using linear expres-
sions, their values may be tested in state invariants and state transition guards, and
additionally they may be reset to an arbitrary constant. The specification of their dy-
namic behavior, however, allows more freedom: it is given by a trajectory equation,
that is, a differential equation of the form ẋ = a (where ẋ denotes the derivation with re-
spect to time and a ∈R) which is again attached as an invariant to a state. Such limited
version of differential equations allows to reason with linear constraints. Syntactically,
ẋ is represented by an apostrophe: x’. In case time scales are used, the equation is
specified using a time unit in the form ẋ = a per TimeUnit.

References to other data elements, that is, data ports and discrete-type data sub-
components of a component are disallowed in state invariants. If the invariant is absent,
then it is assumed to be true. Note that clocks can be considered as special continu-
ous components which obey the trajectory equation ẋ = 1, and which can only be reset
to zero.

A shorthand is available for the specification of invariants. A state may specify the
urgent in parameter, which specifies the amount of time the system may reside in
that state. This implicitly adds a clock to the model specification. Upon entering the
state, this clock is reset to zero, and the urgent parameter induces an upper bound on
this clock.

Formally, the state behavior of a component is specified by a hybrid automaton
which operates on the data subcomponents of the component’s implementation, and
on the outgoing data ports that are declared in the features part of the component’s
type. Here clock data components are different from the usual ones as their access
is limited: they may only be reset to zero. After reset, they start increasing their value
implicitly as time progresses. All clocks in the system proceed at the same linear rate.
The value of a clock component therefore denotes the amount of time that has elapsed
since its last reset. Thus, clocks can be considered as timers.

State Transitions Transitions between states are of the general form

m1 -[e when g then f]-> m2

where m1 and m2 are modes, e is a trigger event for the transition, g is a guard, and f
is an effect. Each of the trigger, the guard, and the effect can be omitted. To define a
transition that applies to every state of the component, the wildcard symbol * can be
used in place of the source state.

35

State transitions may, in addition to being triggered like mode transitions, occur
spontaneously, either with the generation of an output event that triggers input events
in other components or as an invisible (i.e., event-free) transition.

Similar to mode transitions also state transitions allow the specification of guards.
As an extension, a shorthand for clock guards is available using the within to nota-
tion, which specifies the time interval in which the transition is enabled upon entering
its source state. This behavior specifies an implicit clock (see also the urgent in
parameter) which is bound between the specified lower and upper bounds.

An effect defines the impact of the transition by specifying update operations for
the values of data subcomponents and outgoing data ports. In particular, clock resets
are possible updates, that is, assignments of the form c := 0[.0] where c denotes a
clock component. Another possible form of assignment is d := a where d denotes
a continuous data component and a ∈ R. Other assignments to clock or continuous
components are not allowed. Additionally, for tuples, it is allowed to assign a new
value at a particular index of the form t[i] := v, where t is a tuple of type (τ1, . . . ,τn),
1 ≤ i ≤ n and v is of type τi. Please see Section 2.6.1 for an overview of supported
operators. Moreover it must be guaranteed that every data element occurring on the
right-hand side of an assignment has a defined value, and that the result type of the
right-hand side matches the type of the left-hand side, with the following exceptions:

• expressions of type clock or continuous can also be assigned to data ele-
ments of type real and

• expressions of an integer range type can be assigned to data elements of another
integer range type, involving a modulo operation of the value of the former ex-
ceeds the range of the latter. More exactly, the assignment of a value z ∈ Z to a
data element d of range type [l..u] yields the new value (z− l) mod (u− l +
1)+ l for d.

The resulting combinations of types are listed in Table 7. Here τ denotes any
discrete data type other than real, and RNum abbreviates {clock, continuous,
real}.

Operator Type Meaning
:= τ → τ Discrete assignment

{0,0.0}→ clock Clock reset
R→ continuous Continuous constant assignment

RNum→ real Real assignment
(τ1, . . . ,τn)
×int → τi Tuple index assignment at index i

Table 7: Assignment Operator

If the when or the then clause are absent, then the guard is assumed to be of the
form true, and the effect is assumed to be the empty list of assignments, respectively.

Reactivation events are also allowed for state transitions. In addition to those speci-
fied for modes, effects may be specified (but no guards). Effects apply using the regular

36

semantics. Thus, similar to regular transitions, data subcomponents for which no effect
is specified will keep their original value, unless it was disabled in the source mode,
but becomes active in the target mode.

For semantic reasons it is not possible to give an output event as an effect. If an
incoming event triggers an outgoing event, then this has to be modeled as two separate
transitions: the first is triggered by the incoming event and leads to an intermediate
mode in which (only) the outgoing event can be emitted.

37

States

::= State+

State

::= identifier : [StateType] state [urgent in number]
[while Invariant][InlineProperties];

StateType

::= initial | activation
Invariant

::= TrajectoryEquation | Expression | Invariant and Invariant

TrajectoryEquation

::= SubcomponentIdentifier’ = ConstantValue [per TimeUnit]

ComparisonOperator

::= < | > | <= | >=
TimeUnit

::= day | hour | min | sec | msec
StateTransitions

::= StateTransition+

StateTransition

::= SourceState -[[StateTrigger[(Expression)]] [when StateGuard]
[within number to number] [then StateEffect]]->
identifier[InlineProperties];

SourceState

::= identifier | *
StateTrigger

::= EventPortReference [(Expression)] | @activation
StateGuard

::= Expression

StateEffect

::= Assignment {;Assignment}∗

Assignment

::= (DataPortReference | SubcomponentIdentifier) := Expression

Here the terminal symbol operator refers to the built-in operators as introduced in
Section 2.6.1. The optional expression argument for the Trigger must only be given for
outgoing event data ports.

Properties For modes, states and transitions the following properties are defined:

38

• CSSP properties that are applicable to modes and states, see also Section 2.3

• Guard: Applies to mode transitions only. This is a property of type SlimExpr
which specifies the guard of the transition it is associated with.

Syntactic Restrictions

I-1 Section 2.11 specifies which subcomponent categories support modes.

I-2 All declared mode identifiers have to be distinct.

I-3 Exactly one mode or state (the starting mode or state) has to be distinguished as
initial or activation mode.

I-4 Each mode or state in the specification must be (syntactically) reachable by a
sequence of transitions from the starting mode or state.

I-5 The data subcomponents referred to by an invariant must be active in the state
for which that invariant is defined.

I-6 Clock invariants must only refer to clock subcomponents.

I-7 Trajectory equations and continuous invariants can refer to continuous sub-
components only.

I-8 Time units must and may only be used in comparisons involving clock data
subcomponents.

I-9 For each continuous data component, at most one trajectory equation may
be given in each state.

I-10 Default values for data subcomponents, if given, must satisfy the invariant of the
starting state.

I-11 The source and target mode or state of a transition must both refer to (not neces-
sarily distinct) modes or states of the current component.

I-12 Each mode trigger must be

• an incoming event port of the current component or

• a name of the form c.p where c refers to a subcomponent that is active in
m and p is an outgoing event port of that subcomponent.

where m refers to the source mode or state of the respective transition.

I-13 Each state transition trigger, if given, must be

• an (incoming or outgoing) event port of the current component or

• a name of the form c.p where c refers to a subcomponent that is active in
m and p is an event port of that subcomponent.

39

where m refers to the source mode or state of the respective transition.

I-14 The mode or state transition guard, if given, must be a well-typed bool-valued
expression which only refers to data ports or data subcomponents that are active
in the source mode or state of that transition.

I-15 The left-hand side of each assignment in a mode or state transition effect is a dis-
tinct data subcomponent that is active in the target mode or state of that transition
or an outgoing data port of the current component.

I-16 The right-hand side of each assignment in a mode or state transition effect is
a well-typed expression over data ports or data subcomponents of the current
component that are active in the source mode or state of that transition.

I-17 The right-hand side of each assignment must be consistent with respect to the
left-hand side, i.e., it must respect the typing rules given in Table 7.

I-18 (see H-7)

I-19 States may only be defined for atomic components (those components that do
not contain subcomponents of category other than data).

2.11 Overview of Component Restrictions
To keep the presentation simple, the context-free grammar given in the previous chapter
defines a superset of the specifications which are actually admitted. Table 8 gives an
overview of the syntactic restrictions which are additionally imposed. Note that data
components are not considered as they do not allow user-defined specifications of types
and implementations.

Also note that, according to Section 2.10.2, connections can only be established
between components which offer event ports, either between the subcomponents of a
supercomponent or between the subcomponent and its supercomponent. Therefore,
e.g., connections are supported for process implementations (having threads with event
ports as subcomponents), but not for threads (only data subcomponents, which do not
have ports) or for processors (no subcomponents).

40

Category Type elements Implementation
elements

Bindings

abstract any any any
Software categories
data — subcomponents: data —
process port

key
subcomponents:
thread, data

connections
flows
modes/transitions

stored in
running on

thread port
key

subcomponents: data
flows
modes/transitions

—

Hardware categories
bus — — accesses bus
device port

key
subcomponents: data
flows
modes/transitions

accesses bus/network

memory — subcomponents: memory accesses bus
network — — accesses network
processor — — accesses bus
Composite categories
node port

key
subcomponents:
data, process, bus,
device, memory,
processor, system

connections
flows
modes/transitions

accesses bus/network

system port
key

subcomponents:
data, process, bus,
device, memory,
processor, system

connections
flows
modes/transitions

accesses bus/network

Table 8: Overview of Component Restrictions

41

2.12 Error modeling
Error models can be used to annotate (non-data) component types and implementa-
tions to support safety and dependability analysis. The corresponding extension of the
AADL language is defined in the Error Modeling Annex (EMA) [RD7], from which
we draw some key ideas for developing our error modeling formalism.

The error behavior of a complete system emerges from the combination of the
individual component error models. Failing components can affect other components
because the components interact or one component is a hardware resource that another
component is bound to. Thus the system error model is a composition of the error
models of its components where the composition is derived from the system hierarchy.

2.13 Error Model Types
An error model type defines an interface in terms of incoming and outgoing error prop-
agations. Error propagations are used to exchange error information between com-
ponents. Errors can only be propagated between components which are physically
connected, in the following sense (cf. Section 2.10.2 for similar restrictions regarding
port connections):

• from a hardware or composite component to a hardware or composite component
if both access a common bus,

• from a bus to a hardware or composite component if the latter accesses the for-
mer,

• from a processor to a process if the process is running on that processor,

• from a memory component to a process if the process is stored in that component,

• from a non-atomic component to each of its direct (non-data) subcomponents,
and

• from a subcomponent to its direct supercomponent.

42

ErrorType

::= error model identifier
[features ErrorFeatures]

end identifier;
ErrorFeatures

::= ErrorFeature+

ErrorFeature

::= ErrorPropagation

ErrorPropagation

::= InPropagation | OutPropagation

InPropagation

::= identifier: in error propagation;

OutPropagation

::= identifier: out error propagation;

Syntactic Restrictions

J-1 All error model type identifiers declared within a scope have to be distinct.

J-2 All error propagation identifiers declared within an error model type have to be
distinct.

J-3 The first error type identifier has to match the end error type identifier.

2.14 Error Model Implementations
An error model implementation provides the structural details of the error model. The
actual behavior of an error model implementation is given by a (probabilistic) state
machine whose states are the error states declared in the error model implementation.

Error events are internal to the component; they reflect changes of the error state
caused by local faults and repair operations. Moreover an occurrence distribution can
be attached to an error event, to model the probabilistic nature of faults.

Clocks explicitly define clock components that allow timed behavior to be intro-
duced in the error specification. The behavior of these clocks is the same as for nominal
models.

Error states are employed to represent the current configuration of the component
with respect to errors. The specification distinguishes between the initial or activation
state (which needs to be unique), and actual error states. The meaning of initial and
activation states is similar to that of initial and activation modes (cf. Section 2.10.4).
If an initial state is given, the error model is put in that state only in the beginning
of system execution, supporting error history during deactivation phases. With an

43

activation state, the error model starts over again in that state after each (re-)activation
of the respective component. This distinction is useful, e.g., for modeling the different
error behavior of hardware and software components: while reactivating a hardware
component will generally not remove the cause of an error, this is usually the case for
software components. The states of an error model implementation can further specify
invariants or urgency in the same fashion as for states in the nominal models.

Reset events can be sent from the nominal model (see Section 2.10.4) to the error
model of the same component, trying to repair a fault which has occurred. It is up to
the error model to specify whether the repair operation is successful.

Reactivation triggers operate in the same fashion as for mode models. Upon reac-
tivation of the error model, this transition is taken, possibly nondeterministically.

Transitions between states can be triggered by error events, reset events, @activation
triggers, or error propagations. To define a transition that applies to every state of the
error model, the wildcard symbol * can be used in place of the source state. Note that
error transitions may refer to clocks of the error implementation in their guards and
effects. The same linearity conditions apply as for mode component implementations.

Outgoing error propagations report an error state to other components. If their
error states are affected, the other components will have an corresponding incoming
propagation.

44

ErrorImplementation

::= error model implementation Name
[events ErrorEvents]
[clocks ErrorClocks]
[states ErrorStates]
[transitions ErrorTransitions]

end Name;
ErrorEvents

::= ErrorEvent+

ErrorEvent

::= identifier: error event [Occurrence];

Occurrence

::= occurrence Distribution

Distribution

::= poisson number [per TimeUnit]

ErrorClocks

::= ErrorClock+

ErrorClock

::= identifier : data clock [TimeUnit];

ErrorStates

::= ErrorState+

ErrorState

::= identifier: StateType state [urgent in number] [while Invariant];

ErrorTransitions

::= ErrorTransition+

ErrorTransition

::= SourceState -[ErrorTrigger [when ModeGuard]
[within number to number] [then ModeEffect]]-> identifier;

SourceState

::= identifier | *
ErrorTrigger

::= identifier | reset | @activation

Syntactic Restrictions

K-1 All error model implementation names declared within a scope have to be dis-
tinct.

45

K-2 The first identifier of each error implementation name must refer to an error
model type that is defined within the same scope.

K-3 All error events declared within an error model implementation have to be dis-
tinct.

K-4 Both the source and the target state of an error transition must refer to (not nec-
essarily distinct) states of the current error model.

K-5 The error transition trigger must be

• an error event or

• an (incoming or outgoing) error propagation or

• the keyword reset.

K-6 The transitions leaving a specific error state must either all be probabilistic with
a Poisson distribution or non-probabilistic.

K-7 Non-determinism is not allowed in error model implementations, that is, the trig-
gers of all transitions leaving a specific error state must be distinct.

K-8 Each state in the specification must be reachable by a sequence of transitions
from the starting state.

K-9 The source, trigger and destination combination of an error transition must be
unique, i.e., an unique error transition can only be declared once.

K-10 The first error implementation identifier has to match the end error implementa-
tion identifier.

K-11 The identifiers of error events and error propagations within the scope of the
error implementation have to be distinct.

K-12 The rates of events with a poisson distribution must be positive.

K-13 The identifiers of error states within an error implementation have to be distinct.

K-14 Error states may not be defined in both the error model type and implementation.

K-15 Exactly one error state in the implementation (the starting state) has to be distin-
guished as either initial or activation.

K-16 The identifiers of clocks within an error implementation have to be distinct.

K-17 State invariants must refer to an existing clock within the error implementation.

K-18 State invariants must be convex.

K-19 State invariants must be expressions of type bool.

K-20 State urgency values may not be negative.

46

K-21 Transition guards may only refer to clocks declared in the same error implemen-
tation.

K-22 Transition guards must be expressions of type bool.

K-23 Transition time delay bounds may not be negative, and the lower bound has to
be smaller than the upper bound.

K-24 The left-hand side of each assignment in the error transition effect must be a
distinct clock.

K-25 Transitions effects may only refer to clocks declared in the same error imple-
mentation.

K-26 Probabilistic error states may not have invariants.

K-27 Probabilistic error states may not declare an urgency parameter.

K-28 Transitions leaving from probabilistic error states may not have guards.

K-29 Transitions leaving from probabilistic error states may not specify time delays.

K-30 Reactivation transitions may not have guards.

K-31 Reactivation transitions may not use the within-notation.

K-32 If the system specification makes use of time scales, error events must specify a
time unit.

K-33 If the system specification makes use of time scales, error clocks must specify a
time unit.

K-34 If the system specification makes use of time scales, mode urgency has to be
expressed using a time unit.

K-35 If the system specification makes use of time scales, transition time delays have
to be specified using time units

2.15 Fault Injections
To specify the association between an error model and a nominal model, so called fault
injections are used. A fault injection specifies at minimum the error model implemen-
tation that is associated with a nominal component. Fault injections can further specify
the effect on a data component or port when the error model is in a certain state, as
well as a set of modes that the nominal model can be in during certain error states and
possible blocking of event ports in certain error states.

Fault injections are specified by means of the following properties:

• ErrorModel: A classifier value referencing an error model implementation.
This specifies for a nominal component the associated error model.

47

• FaultEffects: A list of FaultEffect values, which are records with a
state field that accepts a string referencing an error state of the associated
ErrorModel, a target field which is a reference to the element to which
the fault effect applies, and an effect field of type SlimExpr specifying an
expression with the fault effect that must apply in the specified error state.

• ForcedModes: A list of ForcedMode values, which are records with a state
field that accepts a string referencing an error state of the associated ErrorModel,
and a modes field which is a list of references to modes or states in the compo-
nent which the component is allowed to be in during the specified error state.

• InhibitList: A list of Inhibit values, which are records with a state
field that accepts a string referencing an error state of the associated ErrorModel,
and a ports field which is a list of references to event (data) ports of the com-
ponent which will be disabled in during the specified error state.

It is possible to specify fault injections on component types, implementations as
well as non-data subcomponents. Such fault injections apply in the order Subcomponent>
Implementation > Type.

If the error model reaches a state for which a FaultEffect property is specified,
this effect is applied, overriding any possible transition effect or data flow for as long
as the error model is in this state. When no fault effect applies any longer, the data
flows return to their original expressions, but data component that were modified due
to a transition effect are not reset to their original value. It is an error in the model if a
FaultEffect invalidates a nominal state invariant of the current active state (it will
block the associated error event or propagation from occurring).

With the ForcedModes property, it is possible which modes (or states) in the
nominal model are valid when the error model is in a particular error state. When the
error model is in such a state, any transition from a mode in this list to a mode not in this
list becomes disabled. When the error model moves from one state to another due to
any event or propagation, but not reset, if the active mode (or state) of the nominal
component is not in the ForcedMode list of the target state, a forced transition is
taken to the first mode listed in the ForcedMode property. A transition in the nominal
model with the reset transition can only be taken if the synchronizing error transition
targets a state for which either the ForcedMode property is not specified, or contains
the target mode of the nominal transition. It is an error in the model if a forced mode
transition is inhibited by an invariant that does not hold in the current state (it will block
the associated error event or propagation from occurring).

If the error model reaches a state for which a Inhibit property is specified, any
transition that is triggered by the referenced event (data) ports becomes disabled.

48

3 Abstract Syntax

3.1 Data Types
The following sets are used to define types of data in a SLIM model. The set AbsPrimDTyp
contains the set of Boolean values B, the set of integers Z, the set of real numbers R,
sets of enumeratives, and the intervals of integers. AbsDTyp is the union of AbsPrimDTyp
and tuples of AbsPrimDTyp. AbsATyp is the set of real functions R→ R. Finally,
AbsTyp = AbsDTyp∪AbsATyp.

3.2 SLIM Model
A SLIM model S is a tuple 〈Σ,CTyp,CImpl〉 consisting of a set of global symbols Σ, a
set CTyp of component types, and a set CImpl of component implementations. These
are defined in the following sections.

3.2.1 Global Symbols

The set Σ of global symbols consists of a set of constant symbols VΣ and a set of
function symbols UΣ. Each constant v∈VΣ has a type typ(v)∈AbsDTyp. Each function
symbol f ∈UΣ has a type typ(f) ∈ AbsDTyp+ (i.e. tuples of AbsDTyp).

3.2.2 Component Types

Each component type c ∈ CTyp consists of

• a set of input data ports IDPrt(c),

• a set of output data ports ODPrt(c),

• a set of input event ports IEPrt(c),

• a set of output event ports OEPrt(c).

(event data ports are represented by a pair of data and event ports).
Let us denote Prt(c) the set of ports of component type c, i.e. Prt(c) := IDPrt(c)∪

ODPrt(c)∪ IEPrt(c)∪OEPrt(c), with IPrt(c) the set of input ports, i.e., IPrt(c) :=
IDPrt(c)∪ IEPrt(c), with OPrt(c) the set of output ports, i.e., OPrt(c) := ODPrt(c)∪
OEPrt(c), with DPrt(c) the set of data ports, i.e., DPrt(c) := IDPrt(c)∪ODPrt(c),
and with EPrt(c) the set of event ports, i.e., EPrt(c) := IEPrt(c)∪OEPrt(c), .

Each port p ∈ Prt(c) is associated with a set of values typ(p) ∈ AbsDTyp, which
represents the value that the data associated with the port can have in a specific time.

Each output data port p ∈ ODPrt(c) has a default value dfl(c, p).
Each input data port p ∈ IEPrt(c) has a Boolean attribute blk(c, p), denoting if it is

blocking or not.

49

3.2.3 Component Implementations

Each component implementation im ∈ CImpl is associated with a component type
typ(im)∈CTyp. For simplicity, we write IEPrt(im), OEPrt(im), IDPrt(im), ODPrt(im),
dfl(im, p), ... instead of IEPrt(typ(im)), OEPrt(typ(im)), IDPrt(typ(im)), OEPrt(typ(im)),
dfl(typ(im), p),

Each composite component implementation im ∈ CImpl consists of

• a finite non-empty set Mod(im) of modes,

• its initial mode, ini(im) ∈Mod(im),

• the invariant of each mode, inv(im,m),

• a set Sub(im) of subcomponents,

• a set Act(im,m)⊆ Sub(im) of active subcomponents for each mode m∈Mod(im),
such that Sub(im) =

⋃
m∈Mod(im) Act(im,m),

• a set Con(im,m) of event connections for each mode m ∈Mod(im), such that

Con(im,m)⊆ IEPrt(im)× SIE(im,m)

∪ SOE(im,m)× OEPrt(im)

∪ SOE(im,m)× SIE(im,m)

where SIE(im,m) := {sc.p | sc ∈ Act(im,m), p ∈ IEPrt(sc)} and SOE(im,m) :=
{sc.p | sc ∈ Act(im,m), p ∈ OEPrt(sc)}.

• a set Flw(im,m) of data flows for each mode m ∈ Mod(im), such that Flw(im)
is set of pairs 〈p,a〉 where p is a port in ODPrt(im)∪ SID(im), a is an expres-
sion over IDPrt(im)∪ SOD(im), where SOD(im) := {sc.p | sc ∈ Sub(im), p ∈
ODPrt(sc)}, and SID(im) := {sc.p | sc ∈ Sub(im), p ∈ IDPrt(sc)},

• a set MTr(im) of mode transitions, where each mode transition is a tuple 〈m, t,g, f ,m′〉,
where m,m′ ∈Mod(im), t is a trigger, g denotes a guard, and f is an effect,

• and a set RTr(im) of reactivation transitions, where each reactivation transition
is a tuple 〈m, f ,m′〉, where m,m′ ∈Mod(im), and f is an effect.

Every subcomponent s∈ Sub(im) is associated with a type typ(s)∈CTyp∪CImpl∪
AbsTyp.

As abbreviations we use CSub(im) :=
⋃

m∈Mod(im){sc∈Act(im,m) | typ(sc)∈CTyp∪
CImpl} for the set of (direct) control subcomponents of im, DSub(im) :=

⋃
m∈Mod(im){sc∈

Act(im,m) | typ(sc)∈AbsTyp} for the set of data subcomponents of im, DAct(im,m) :=
{sc ∈ Act(im,m) | typ(sc) ∈ AbsTyp} for the set of data subcomponents of im that are
active in mode m.

Each data subcomponent d ∈ DSub(im) has a default value dfl(im,d).
Together, the data subcomponents and the data ports constitute the data elements

of a component implementation

Dat(im,m) := DAct(im,m)∪DPrt(im)

50

Again we set Dat(im) :=
⋃

m∈Mod(c) Dat(im,m).
If CSub(im) = /0, then im is called atomic.

3.2.4 SLIM Model Instance

A SLIM Model Instance is given by a SLIM Model and a component type or im-
plementation chosen as root instance. Formally, a SLIM Model Instance is a tuple
SI = 〈Σ,CTyp,CImpl,root〉 where S = 〈Σ,CTyp,CImpl〉 is a SLIM Model and root is
in CTyp∪CImpl. If the SLIM Model S contains only one component implementation
root(S) which is not instantiated as subcomponent of another component, we some-
times refer to the SLIM Model as it were a SLIM Model Instance assuming that root(S)
is the root.

3.3 Abstract model corresponding to the concrete specification
3.3.1 Basic Sets

The following basic sets are derived by the language grammar:

Ide: the set of identifiers;

Nam: the set of names, given by Nam := Ide.Ide;

Cat: the set of component categories, given by

Cat := {bus,data,device,memory,network,
node,process,processor,system,thread};

DTyp: the set of discrete data types, given by

DTyp := {bool,int,real,} ∪
{enum(e1, . . .,en) | n≥ 1,ei ∈ Ide} ∪
{[l..u] | l,u ∈ Z, l ≤ u} ∪
{(tp1,tp2) | tp1, tp2 ∈ DTyp}

where n≥ 1, and ei ∈ Ide for each i ∈ [n]; and

ATyp: the set of analogue data types, given by

ATyp := {clock,continuous}.

51

3.3.2 Data Types

For each type tp ∈ DTyp∪ATyp, we let

D(t p) :=

B if tp = bool
{e1, . . . ,en} if tp = enum(e1, . . .,en)
Z if tp = int
R if tp = real
{l, . . . ,u} if tp = [l..u]
Dtp1 ×Dtp2 if tp = (tp1,tp2)
R→ R if tp = clock
R→ R if tp = continuous

3.3.3 Component Types

CTyp is the set of component types defined in the concrete specification S as follows.
Whenever S contains

cc name . . . end name

where cc ∈ Cat, name ∈ Nam, then name ∈ CTyp.

Ports Let c∈CTyp. The ports of c are defined as follows. Whenever the specification
of c contains features . . . p: pc; . . . with

• pc = in event port, then p ∈ IEPrt(c) and typ(c, p) := /0,

• pc = out event port, then p ∈ OEPrt(c) and typ(c, p) := /0,

• pc = in data port tp, then p ∈ IDPrt(c) and typ(c, p) := D(tp),

• pc = out data port tp . . ., then p ∈ ODPrt(c) and typ(c, p) := D(tp),

• pc=in event data port tp, then pe ∈ IEPrt(c), pd ∈ IDPrt(c) and typ(c, p) :=
D(tp), and

• pc = out event data port tp, then pe ∈ OEPrt(c), pd ∈ ODPrt(c) and
typ(c, p) := D(tp).

As abbreviations we use:

EPrt(c) := IEPrt(c)∪OEPrt(c),

DPrt(c) := IDPrt(c)∪ODPrt(c).

3.3.4 Component Implementations

CImpl is the set of component implementations defined in the concrete specification S
as follows. Whenever S contains

cc implementation type.name . . . end type.name

where cc∈Cat, type.name∈Nam, then type.name∈CTyp and typ(type.name) = type.

52

Modes The set Mod(i) of modes of a component implementation i∈CImpl is defined
as follows. Whenever the concrete specification of i in S contains

modes . . . m: [initial] mode while iv; . . . ,

then

• m ∈Mod(i),

• ini(i) := m if the initial attribute is present, and

• inv(i,m) := iv;

If the specification of a component implementation im ∈ CImpl does not contain
any mode, then we assume that Mod(i) = {ini(i)} for some initial mode ini(i) =
m0 with inv(i,m0) =>.

Subcomponents The sets Sub(im) and Act(im,m) of subcomponents and active sub-
components of a component implementation im∈CImpl are defined as follows. When-
ever the concrete specification of im in S contains

subcomponents . . . sc: cc type bn sc′ . . . in modes(m1, . . .,mn); . . .

where bn∈ {accesses,running on,stored in}, sc,sc′ ∈ Ide, cc∈Cat, type∈
CTyp∪CImpl∪DTyp∪ATyp, and n≥ 1, then sc∈ Sub(im), typ(sc)= type and for every
i ∈ [n] sc ∈ Act(im,mi).

Event Port Connections Let im ∈ CImpl and m ∈ Mod(im). The set Con(im,m)
of event port connections of im active in m are defined as follows. Whenever the
specification of im contains

connections . . . port sc1.p1 -> sc2.p2 in modes(m1, . . .,mn); . . .

(where, for each i∈ [2] and j∈ [n], sci ∈Act(im,m j)∪{ε}, p1 ∈ IEPrt(sc1)∪OEPrt(sc1),
and p2 ∈ IEPrt(sc2)∪OEPrt(sc2)), then

(sc1.p1,sc2.p2) ∈ Con(im)

and, for each j ∈ [n], (sc1.p1,sc2.p2) ∈ Act(im,m j). Thus, according to the syntactic
restrictions imposed in Section 2,

Con(im,m) ⊆ IEPrt(im) × SIE(im,m)
∪ SOE(im,m) × OEPrt(im)
∪ SOE(im,m) × SIE(im,m)

as defined in Section 3.2.3.

53

Data Flows Let im ∈ CImpl and m ∈Mod(im). The set Flw(im,m) of data flows of
im are defined as follows. Whenever the specification of im contains

flows . . . port a -> p in modes(m1, . . .,mn); . . .

where, for each i∈ [n], p∈ODPrt(im)∪SID(im,mi), a is an expression over IDPrt(im)∪
SOD(im,mi), SOD(im,m) := {sc.p | sc∈Act(im,m), p∈ODPrt(c.sc)}, and SID(im,m) :=
{sc.p | sc ∈ Act(im,m), p ∈ IDPrt(c.sc)}, then

(a, p) ∈ Flw(im,mi)

and, for each j ∈ [n], ((a, p) ∈ Act(im,m j).

Event Data Connections Let im ∈ CImpl and m ∈Mod(im). Whenever the specifi-
cation of im contains

connections . . . port sc1.p1 -> sc2.p2 in modes(m1, . . .,mn); . . .

(where, for each i∈ [2] and j∈ [n], sci ∈Act(im,m j)∪{ε}, pe
1 ∈ IEPrt(sc1)∪OEPrt(sc1),

and pe
2 ∈ IEPrt(sc2)∪OEPrt(sc2)), then

(sc1.pe
1,sc2.pe

2) ∈ Con(im)

and, for each j ∈ [n], (sc1.pe
1,sc2.pe

2) ∈ Act(im,m j).
Additionally,

(sc1.pd
1 ,sc2.pd

2) ∈ Flw(im,mi)

and, for each j ∈ [n], ((sc1.pd
1 ,sc2.pd

2) ∈ Act(im,m j)
Thus, for each event data port connection, both an event and data connection is

created. to the mapped event ports pe and data ports pd .

Default values Using the default attribute, an implementation specification as-
signs default values to data subcomponents. In our semantics, this assignment is rep-
resented by the mapping dfl(im,d). We assume that dfl(im,d) = 0 for every clock
d ∈ Clk(im).

Mode Transitions The set of mode transitions of a component implementation im ∈
CImpl, MTr(im), is defined as follows: whenever the specification of im contains an
entry of the form

transitions . . .m -[t when g then f]-> m′; . . .

where m,m′ ∈Mod(im), t is a trigger, g denotes a guard, and f is an effect (as defined
in Section 2, then

(m, t,g, f ,m′) ∈MTr(c).

Event data port references in transitions are split into their separated event and data
counterparts. To this end, for each transition where (p,a) = t and pe ∈ OEPrt(im), t
is replaced by pe, and f]{pd := a}. Furthermore, for each transition where t = pe ∈
IEPrt(im), for each data(t) expression in mode transition effects, the expression is
replaced by pd .

54

Reactivation Transitions The set of reactivation transitions of a component imple-
mentation im ∈ CImpl, RTr(im), is defined as follows: whenever the specification of
im contains an entry of the form

transitions . . .m -[@activation then f]-> m′; . . .

where m,m′ ∈Mod(im) and f is an effect, then

(m, f ,m′) ∈ RTr(im).

3.4 Temporal Formulas
The abstract syntax of properties is defined by the following table, where each row
maps the constructs in the concrete syntax to the corresponding version in the abstract
notation.

constraint := atom | φ := a |
not constraint | ¬φ |
constraint and constraint | φ ∧φ |
constraint or constraint | φ ∨φ |
constraint implies constraint | φ → φ |
always constraint | Gφ |
never constraint | G¬φ |
in the future constraint | Fφ |
constraint until constraint | φ Uφ

in the past constraint | Oφ |
constraint since constraint; φ Sφ ;

atom := true | a := > |
false | ⊥ |
term relation term | t ./ t |
time_until(term) relation term | B./tt |
change(port)| v′ 6= v |
term ; t;

term := port | t := v |
constant | c |
uninterpreted_function (term) | f (t) |
term function term | t ? t |
next(port) | v′;
last_data(event_port) ; ld(t);

55

3.5 Model Extension
The integration of the nominal and the error model is the so-called (fault) model ex-
tension. It modifies each nominal control component model for which a (non-trivial)
error model is defined by enriching it by the error model specification, thus produc-
ing the extended model which represents both the nominal and the failure behavior.
Informally, the extended model is obtained as follows:

• For each control component in the system, (an instantiation of) the associated
error model is attached as a new system subcomponent to the nominal specifi-
cation.

• The starting mode of the error subcomponent is defined to be the starting state
of the error model. It is an initial/activation mode if the starting state
is of type initial/activation, respectively.

• Each state transition of the error model gives rise to a mode transition of the error
subcomponent.

• The set of event ports of the nominal model is extended by adding all error prop-
agations (propagation ports) of the respective error model, in order to simulate
the forwarding of error information via propagations by event communication.

• Correspondingly, the set of event port connections has to be extended by propa-
gation port connections.

Error component translation For a given error model type Et and implementation
Ei, the nominal specification for both the corresponding component type and compo-
nent implementation is defined as follows:

• A unique name is generated for the component type.

• For each outgoing error propagation p in Et , a corresponding port is added to
OEPrt(c) with typ(c, p) := /0;

• For each incoming error propagation p in Et , a corresponding port is added to
IEPrt(c) with typ(c, p) := /0. Furthermore, blk(c, p) = false;

• For each error event e in Ei, a corresponding port is added to OEPrt(c) with
typ(e, p) := /0. The event is furthermore annotated with the occurrence probabil-
ity, if any;

• A reset port is added to IEPrt(c) for the reset event.

• A special data port d p, named errorState, is added to ODPrt(c), for which
holds that typ(c,d p) := {s1, . . . ,sn}, for all states s ∈ Ei. This port contains an
enumeration of values that correspond to the states specified in Ei.

The component type is then added to the specification such that name ∈ CTyp.
The component implementation i is generated as follows:

56

• A unique name is generated for the component implementation, matching the
generated component type name.

• For each clk defined in the list of clocks, a data subcomponent dclk is added to
Sub(i).

• For each s in the list of error states of Ei, a mode m is added to Mod(i) where

– ini(i) := m iff s is an initial state, or

– inv(i,m) := iv iff the invariant iv is defined for s, and

– StateMap(Ei,s) = m;

• For each et in the set of state transitions of Ei, a transition tis added to MTr(i)
where if et is of the form

s -[t when g then f]-> s′;

then
t = (StateMap(Ei,s), t,g, f ′,StateMap(Ei,s′))

, with f ′ = f]{errorState := s′}

• For each ert in the set of reactivation transitions of Ei, a reactivation transition
rtis added to RTr(i) where if ert is of the form

s -[@activation then f]-> s′;

then
rt = (StateMap(Ei,s), f ′,StateMap(Ei,s′))

, with f ′ = f]{errorState := s′}

• For every s in the list of error states of Ei without an outgoing reset transition,
the dummy transition

(StateMap(Ei,s),reset, true,ε,StateMap(Ei,s′)) ∈MTr′(i)

• References in invariant, guard or transition effect expressions are updated to
point to the corresponding element in Sub(i).

Error component integration In order to insert the error components into the nom-
inal specification, the nominal component type ct and implementation ci are extended
as follows (where c and i are the component type and implementation corresponding
to the associated error model respectively):

• For each outgoing event port p ∈OEPrt(c) matching an outgoing error propaga-
tion, a corresponding port is added to OEPrt(ct);

• For each incoming event port p ∈ IEPrt(c) matching an incoming error propa-
gation, a corresponding port is added to IEPrt(ct);

57

• An outgoing data port errorState is added to ODPrt(ct), matching the errorState
port of c;

• The error implementation i is added to the subcomponents of ci: sce ∈ Sub(ci)
where typ(sce) = i;

• For each m∈Modes(ci), and each p∈OEPrt(i), (m,(sce.p), true,ε,m) is added
to MTr(ci);

• For each outgoing event port p ∈ OEPrt(c) matching an outgoing error prop-
agation, and for all modes m ∈ Mod(ci), a connection is added (sce.p, p) ∈
Con(ci,m);

• For each incoming event port p ∈ IEPrt(c) matching an incoming error prop-
agation, and for all modes m ∈ Mod(ci), a connection is added (p,sce.p) ∈
Con(ci,m);

• The errorState data port connection is added to c: for each m ∈Mod(ci),

DCon′(ci,m) := DCon(ci,m)]{(i.errorState,errorState)};

Port connections are made between instances of ci and its supercomponent, sibling
components and subcomponents to support error propagations between components.
Note that it is not necessary for a component to be associated with an error model
for it to add error propagations, it suffices if one of its subcomponents has such an
association. Connections can roughly be divided into three types:

• Propagations towards the environment.

• Propagations towards subcomponents;

• Propagations between sibling components;

The first type is already treated in the construction of the extended implementation.
The other two types are specified in the following. Here, for any component imple-
mentation ci, we let ESub(ci)⊆ Sub(ci) be the set of subcomponents of ci which have
an associated error model.

For any component implementation ci with an associated error model subcompo-
nent sce, for all modes m ∈Mod(ci) and for all sc ∈ ESub(ci) where sc ∈ Act(ci,m):

• For each outgoing event port p ∈ OEPrt(typ(sc)) matching an outgoing error
propagation, a connection is added (sc.p,sce.p)∈Con(ci′,m) iff p∈ IEPrt(typ(sce));

• For each incoming event port p ∈ IEPrt(typ(sc)) matching an incoming error
propagation, a connection is added (sce.p,sc.p)∈Con(ci′,m) iff p∈OEPrt(typ(sce)).

Connections between subcomponents are added as well. For all modes m∈Mod(ci)
and for all pairs (sc2,sc1) ∈ Acc(c,m) ∪ Acc(c,m)−1 ∪ Run(c,m) ∪ Sto(c,m) where
(sc2,sc1) ∈ ESub(ci)×ESub(ci):

58

• For each outgoing event port p ∈ OEPrt(typ(sc1)) matching an outgoing error
propagation, a connection is added (sc1.p,sc2.p)∈Con(ci,m), iff p∈ IEPrt(typ(sc2));

After integrating the error model, the following modifications are applied, in order:

• Application of force mode transitions;

• Insertion of fault effects;

• Event inhibition.

Applying forced modes Forced modes are specified by the tuple (si, fm), where

• si is the error state for which the forced modes are specified;

• fm = {m1, . . . ,mn} specify the set of allowed modes in the specified error state;

If upon entering the error state StateMap(Ei,si) the active mode of the component ci is
not in fm, a transition is forced. To this end, the following is performed for each forced
modes specification (si, fm):

Let for each me ∈Mod(i) the function

FM(si) :=
{

f m if there is a forced mode (si, fm)
Mod(ci) otherwise

specify the allowed modes for each possible error state si. Furthermore, let FM−1(m) =
{si | m ∈ FM(si)}.

For each mode mn ∈Mod(ci), and each p ∈ IEPrt(i)∪OEPrt(i):

• inv(ci,mn) is replaced by (inv(ci,mn) and
∨

s∈FM−1(mn)
(errorState= s)).

• For each mode m ∈Mod(ci), and for each p ∈ IEPrt(i)∪OEPrt(i), if there is a
transition (me, p,g, f ,m′e)∈MTr(i) where m 6∈FM(s), with s= StateMap−1(Ei,m′e),
add the transition (m, p,errorState= s,ε,m1), where FM(s) = (m1, . . . ,mn).

The invariant prevents entering a mode that is not in the forced mode list. The added
transitions provide the synchronizing transitions to force entering the first specified
forced mode.

Inserting failure effects Failure effects are specified as a tuple (si, p,e f), where

• si is the error state in which the failure effect applies;

• p is the targeted port or data component;

• e f is the failure effect expression;

Failure effects are applied using either of two methods, depending on whether or not
the target variable if the target of a data flow connection or not. For each individual
failure effect (si, p,e f), the following is performed:

59

• For each (p,a)∈Flw(i, .) this connection is replaced by the flow (p, case errorState =
si then e f otherwise a end;);

• For each (m, t,g, f ,m′) in MTr(i) where t 6= reset and t is not an error event:

– If p := a∈ f , this assignment is replaced by p := case errorState =
si then e f otherwise a end;1;

– Otherwise f = f]{p := e f }.

• For each (m, f ,m′) ∈ RTr(i):

– If p := a∈ f , this assignment is replaced by p := case errorState =
si then e f otherwise a end;;

– Otherwise f = f]{p := e f }.

• For each (m, t,g, f ,m′)∈MTr(i) where t =reset or an error event, and (s, t,g′, f ′,si)∈
MTr(typ(sce)):

– If p := a∈ f , this assignment is replaced by p := case errorState =
si then e f otherwise a end;;

– Otherwise if not (p,a) ∈ Flw(i,m′) then f = f]{p:=e f }.

Event inhibition Event inhibitions are specified as tuples (si, ie), where ie= {e1, . . . ,en}
is the set of inhibited event (data) ports. For each event inhibition:

• For each (m, t,g, f ,m′) in MTr(ci), if t ∈ ie, then the guard g is replaced by (g
and errorState != si).

1As an optimization, nested case expressions can be flattened into a single statement

60

4 Semantics

4.1 Overview
We define the semantics of a SLIM Model Instance SI both in terms of traces and
automata: if the SLIM Model is instantiated in a component implementation (i.e. a
component implementation is chosen as root), we define the corresponding automaton
and the traces of SI coincide with the traces of the automaton; if, instead, the SLIM
Model is instantiated in a component type, there is no corresponding automaton, and
we define the traces of the component type in terms of its interface.

In the following, we define the semantics of component implementations in terms
of a new automata model, called event-data automata, which is employed to formalize
the local behavior of a component. We then define the network of event-data automata
taking into account the interaction of subcomponents.

Finally, we define the traces of a component type and of a component implementa-
tion.

4.2 Formalizing the Local Behavior of Components
4.2.1 Event-Data Automata

An event-data automaton (EDA) is a tuple of the form

A= (M,m0,X,v0,χ,ϕ,E,−→,⇒,blk)

where

• M is a finite set of modes,

• m0 ∈M denotes the starting mode,

• X is a finite set of variables, partitioned into

– input variables, IX,

– output variables, OX, and

– local variables, LX,

• v0 ∈ VX is the initial valuation where VX denotes the set of all valuations, that is,
partial functions that assign values to the elements of X,

• χ : M→ (VLX→B) specifies the mode constraints (where we assume that χ(m0)(v0|LX)=
true),

• ϕ : M→ (LX→ R) specifies the trajectory equations by associating with each
local variable its derivative in the current mode2,

• E is a finite set of events, partitioned into

2If ϕ(m)(x) = 0, then x is a discrete variable, if ϕ(m)(x) = 1, then it is a clock, and otherwise it is a
hybrid variable.

61

– input events, IE, and

– output events, OE, and

• −→⊆M×Eτ×(VX→B)×(VX→VX)×M is a finite (mode) transition relation

where Eτ := E∪{τ}. Transitions are represented in the form m
e,g, f−→ m′, and e,

g, and f are called the trigger, the guard, and the effect, respectively. Here f
is allowed to modify only output and local variables, that is, f (v)(x) = v(x) for
each v ∈ VX and x ∈ IX.

• ⇒⊆M× (VX → VX)×M is a finite reactivation transition relation. Transitions

are represented in the form m
f
⇒ m′, and f is called the effect. Here f is allowed

to modify only output and local variables, that is, f (v)(x) = v(x) for each v ∈ VX
and x ∈ IX.

• blk ⊆ E is a set of blocking events.

4.2.2 Semantics of Event-Data Automata

The operational semantics of an EDA is given as a labeled transition system whose
states, called configurations, are pairs of modes and valuations. Transitions either
model the passing of time, involving an update of the non-discrete variables, or are
internally triggered by events, including the invisible event τ . The second case requires
the guard of the respective transition to be enabled, and then modifies the valuation of
the variables according to the transition effect.

The definition of the semantics employs the following notation. Given a valuation
v ∈ VX , a time delay t ∈ R>0, and a mapping ϕ : LX→ R of trajectory equations, the
notation v+t ·ϕ denotes the corresponding temporal modification of the local variables,
that is, for each x ∈ X,

(v+ t ·ϕ)(x) :=
{

v(x)+ t ·ϕ(x) if x ∈ LX
v(x) otherwise

Formally, the semantics of an EDA is given by the labeled transition system

(Cnf ,κ0,L,−→)

with

• the set of (local) configurations Cnf := M×VX ,

• the initial configuration κ0 := (m0,v0) ∈ Cnf ,

• the set of transition labels L := R>0∪Eτ , and

• the (local) transition relation −→⊆ Cnf ×L×Cnf , given by

– time transition: (m,v) t−→ (m,v+ t ·ϕ(m)) if

∗ t ∈ R>0 and

62

∗ the invariant stays valid for t time units3: χ(m)(v|LX +t ·ϕ(m)) = true.

– internal or event transition: (m,v) e−→ (m′, f (v)) if

∗ e ∈ Eτ and
∗ in the current mode m, an e-transition is enabled where the invariant of

the target mode is valid after applying the transition effect: there exists

m
e,g, f−→ m′ in A such that g(v) = true and χ(m′)(f (v)|LX) = true.

– non-blocking transition: (m,v) e−→ (m,v) if

∗ e 6∈ blk,

∗ in the current mode m, no e-transition is enabled, i.e. there is no m
e,g, f−→

m′ in A such that g(v) = true and χ(m′)(f (v)|LX) = true.

– reactivation transition: (m,v)⇒ (m′, f (v)) if

∗ in the current mode m, an reactivation-transition is enabled where the
invariant of the target mode is valid after applying the transition effect:

there exists m
f
⇒ m′ in A such that χ(m′)(f (v)|LX) = true.

4.2.3 Representing the Local Behavior of Component Implementations as Event-
Data Automata

Given a component implementation, we can now define an EDA that represents the
local behavior of the component. Here we denote the value of a given Boolean expres-
sion b (such as a mode invariant or a transition guard) with respect to a valuation by
JbK : VX→ B. Likewise, JaK(v) denotes the value of an expression a with respect to the
valuation v ∈ VX .

The definition is based on the following associations:

• The meaning of modes in the SLIM component and in the EDA is identical.

• Incoming and outgoing data ports are interpreted as input and output variables,
respectively, and data subcomponents are interpreted as local variables.

• Events in the EDA are either SLIM event ports, or are used to represent the event
communication between a supercomponent and one of its (active) subcompo-
nents. In the second case, they are of the form sc.p where sc is the identifier
of the subcomponent, and p its event port. Here an incoming event port in the
subcomponent gives rise to an output event in the EDA of the supercomponent,
and vice versa.

• Initial valuations, mode constraints and trajectory equations are directly taken
from the SLIM Model.

• (Reactivation) Transition effects are determined as follows:

– incoming data ports are not modified,

3Owing to the linearity of constraints, it suffices to check them in the target valuation only.

63

– outgoing data ports are updated according to the SLIM transition effect, if
given, and not modified otherwise, and

– data subcomponents which are active in the target mode of the transition
are updated according to the SLIM transition effect, if given, or else reset
to their default value if they were inactive in the source mode, and not
modified otherwise.

Formally, the association is defined as follows. For each component implementa-
tion im ∈ CImpl, Aim = (M,m0,X,v0,χ,ϕ,E,−→,⇒,blk) is given by letting

• M := Mod(im),

• m0 := stm(im),

• X := IX∪OX∪LX where

– IX := IDPrt(im),

– OX := ODPrt(im), and

– LX :=
⋃

m∈Mod(im) DAct(im,m),

• v0 := dfl(im),

• for every m ∈ Mod(im), χ(m) is determined by the constraints occurring in
inv(im,m),

• for every m∈Mod(im), ϕ(m) is determined by the trajectory equations occurring
in inv(c,m),

• E := IE∪OE where4

– IE := IEPrt(im)∪{sc.p | sc ∈ CSub(im), p ∈ OEPrt(c.sc)} and

– OE := OEPrt(im)∪{sc.p | sc ∈ CSub(im), p ∈ IEPrt(c.sc)},

• −→ := {(m, p,JgK,J f K,m′) | (m, p,g, f ,m′) ∈MTr(im)} where J f K : VX → VX is
defined as follows: J f K(v) := v′ with

– for each d ∈ IDPrt(im), v′(d) := v(d),

– for each d ∈ ODPrt(im),

v′(d) :=
{

JaK(v) if f contains assignment d := a
v(d) otherwise

– for each d ∈ DAct(im,m′),

v′(d) :=

JaK(v) if f contains assignment d := a
dfl(c,d) else if d /∈ DAct(im,m)
v(d) otherwise

4Here the construction can be optimized by only considering those events that occur as transition labels
in c-transitions.

64

• ⇒ := {(m,J f K,m′) | (m, f ,m′) ∈ RTr(im) or f = id and m′ is the activation
mode} where J f K : VX → VX is defined the same as for −→

• blk = {e ∈ E | blk(im,e)} if im is atomic, while blk = /0 if im is not atomic.

4.3 Formalizing the Global Behavior of Systems
Now we have to specify how the EDAs that represent single components interact with
each other. This interaction is highly dynamic; local transitions can cause subcom-
ponents to become (in-)active, and can change the topology of event and data port
connections and flows. On the level of the formal model this means that both the acti-
vation of the component EDAs and their interconnection depend on the modes of the
EDAs.

4.3.1 Networks of Event-Data Automata

A network of event-data automata (NEDA) is a tuple of the form

N= ((Ai)i∈[n],α,EC,DD)

where

• each Ai is an EDA of the form Ai = (Mi,mi
0,Xi,vi

0,χi,ϕi,Ei,−→i,⇒i,blki) (i ∈
[n]),

• α : M→ 2[n] is the activation mapping (where M := ∏
n
i=1 Mi denotes the set of

global modes),

• EC : M→{i.e | i ∈ [n],e ∈ Ei}2 is the event connection mapping, and

• DD : M→ ({i.x | i∈ [n],x∈ IXi∪OXi} 99K { j.a | j ∈ [n],a∈Exp(IX j)∪OX j}) is
the data dependence mapping where Exp(IX j) denotes the set of all expressions
over IX j.

4.3.2 Semantics of Networks of Event-Data Automata

The semantics of a NEDA is given by the labeled transition system

(Cnf ,κ0,L,=⇒)

which is defined in terms of the local transition systems (Cnf i,κ
i
0,Li,−→i) (i ∈ [n]) of

the constituent EDAs as follows (please refer to the next list for the definitions of the
auxiliary functions):

• the set of (global) configurations is given by Cnf := ∏
n
i=1 Cnf i,

• the initial configuration is κ0 := (κ1
0 , . . . ,κ

n
0),

• the set of transition labels is L := R>0∪{τ}∪E1, and

65

• the (global) transition relation, =⇒⊆ Cnf ×L×Cnf , is given by

– time transition: models the passing of time involving all active EDAs.

κ = (κ1, . . . ,κn)
t

=⇒ (κ ′1, . . . ,κ
′
n)

if there exists t ∈R>0 such that for each i∈ [n], κi
t−→ κ ′i if i∈α(mod(κ)),

and κ ′i = κi otherwise.

– internal transition: represents an invisible step of an active EDA.

κ = (κ1, . . . ,κn)
τ

=⇒ cnsκ(κ
′)

if there exist i ∈ α(mod(κ)), κi
τ−→i κ ′i , and, for all j ∈ [n]\{i}, κ j = κ ′j.

– multiway communication transition: an output event is sent from an active
EDA to all active EDAs connected to that event.

κ = (κ1, . . . ,κn)
e

=⇒ cnsκ(κ
′)

if there exist i ∈ α(mod(κ)), with i 6= 1, oe ∈ OEi, κi
oe−→i κ ′i , and either

there exists (i.oe,1.e) ∈ EC(mod(κ)) or e = τ , and, for all j ∈ [n] \ {i},
either of the following holds:

∗ j ∈ α(mod(κ)) and there exists ie∈ IE j s.t. (i.oe, j.ie)∈ EC(mod(κ))

and κ j
ie−→ j κ ′j,

∗ j∈α(mod(κ)) and there exists no ie∈ IE j s.t. (i.oe, j.ie)∈EC(mod(κ))
and κ j = κ ′j,

∗ j ∈ α(mod(κ ′))\α(mod(κ)) and κ j⇒ j κ ′j,
∗ j 6∈ α(mod(κ)) and j 6∈ α(mod(κ ′)) and κ j = κ ′j.

– input transition: the first EDA provides an input event that is sent to all
active EDAs connected to that event.

κ = (κ1, . . . ,κn)
e

=⇒ cnsκ(κ
′)

if e ∈ IE1 and, for all j ∈ [n], either of the following holds:

∗ j ∈ α(mod(κ)) and there exists ie ∈ IE j s.t. (1.e, j.ie) ∈ EC(mod(κ))

and κ j
ie−→ j κ ′j,

∗ j∈α(mod(κ)) and there exists no ie∈ IE j s.t. (1.e, j.ie)∈EC(mod(κ))
and κ j = κ ′j,

∗ j ∈ α(mod(κ ′))\α(mod(κ)) and κ j⇒ j κ ′j,
∗ j 6∈ α(mod(κ)) and j 6∈ α(mod(κ ′)) and κ j = κ ′j.

The definition employs the following auxiliary functions:

• mod : Cnf →M, extracting the mode information from a given global configura-
tion:

mod(κ1, . . . ,κn) := (mod(κ1), . . . ,mod(κn)) with mod(m,v) := m.

66

• cnsκ : Cnf →Cnf , making a global configuration consistent by taking the (unique)
solution of the equation system that is implied by the data dependence mapping.
In addition, input or output variables that have been disconnected in the transi-
tion (that is, the variable occurs as a target in the data dependence relation of the
old mode but in no data dependence of the new mode) are reset to their default
values:

cnsκ((m1,v1), . . . ,(mn,vn)) := ((m1,v′1), . . . ,(mn,v′n))

if, for each i ∈ [n] and x ∈ IXi∪OXi,

v′i(x) =

JaK(v′j) if DD(m1, . . . ,mn)(i.x) = j.a
vi

0(x) if DD(m1, . . . ,mn)(i.x) undefined,
and DD(mod(κ))(i.x) defined

vi(x) if both DD(m1, . . . ,mn)(i.x) and
DD(mod(κ))(i.x) undefined

4.3.3 Representing the Global Behavior of Component Implementations as Net-
works of Event-Data Automata

We now define the network associated to a component implementation. Apart from the
activation mapping which can directly be taken from the SLIM Model, the essential
idea is to analyze the connection and flow structure of event and data ports in the SLIM
component implementation for generating the corresponding NEDA. For the event part
this means that, for a given global mode of the system, all end-to-end (that is, multistep)
connections between event ports are determined, and are taken into account in the event
connection (EC) mapping. Here the following cases need to be considered:

• multistep out-to-in connections, involving zero or more direct out-to-out, one
direct out-to-in, and zero or more direct in-to-in connections,

• multistep in-to-in connections, originating in the main component and involving
zero or more direct in-to-in connections, and

• multistep out-to-out connections, ending in the main component and involving
zero or more direct out-to-out connections.

The data dependence (DD) mapping can directly be determined from the data port
connections and flows as defined in the SLIM specification.

Formally, given the collection of components in the SLIM specification S, the as-
sociation of a corresponding NEDA,

NS = ((Ai)i∈[n],α,EC,DD),

can be defined as follows:

• each Ai := Aci (i ∈ [n]) is constructed as described in Section 4.2.3,

• the activation mapping α : M → 2[n] is derived from Act as follows: for each
(m1, . . . ,mn) ∈M,

67

– 1 ∈ α(m1, . . . ,mn) and

– whenever i ∈ α(m1, . . . ,mn), then Act(i,mi)⊆ α(m1, . . . ,mn),

• for each (m1, . . . ,mn) ∈M,

EC(m1, . . . ,mn) :=
{(i.op, j.ip) | i, j ∈ [n],op ∈ OEi, ip ∈ IE j,(ci.op,c j.ip) ∈ Con+}

∪ {(i.(sc.ip), j.ip) | i, j ∈ [n],sc ∈ Act(ci,mi),ci.sc = c j,sc.ip ∈ OEi}
∪ {(j.op, i.(sc.op)) | i, j ∈ [n],sc ∈ Act(ci,mi),ci.sc = c j,sc.op ∈ IEi}
∪ {(1.ip, i.ip′) | i ∈ [n], ip ∈ IE1, ip′ ∈ IEi,(c1.ip,ci.ip′) ∈ Con∗}
∪ {(i.op′,1.op) | i ∈ [n],op ∈ OE1,op′ ∈ OEi,(ci.op′,c1.op) ∈ Con∗}

and

• for each (m1, . . . ,mn) ∈M, i ∈ [n], and x ∈ IXi∪OXi,

DD(m1, . . . ,mn)(i.x) :=

j.y if (y,sc.x) ∈ DCon(c j,m j) and
c j.sc = ci

or (sc1.y,sc2.x) ∈ DCon(ck,mk)
andck.sc1 = c j,ck.sc2 = ci

or (sc.y,x) ∈ DCon(ci,mi) and
ci.sc = c j

i.a if (a,x) ∈ Flw(ci,mi)
undefined otherwise

Here the notation (ci.op,c j.ip)∈Con+ means that there is a multistep connection from
the output port op of component ci to the input port ip of component c j, in the global
mode (m1, . . . ,mn), in the order

1. (zero or more) out-to-out connections,

2. (exactly one) out-to-in connection, and

3. (zero ore more) in-to-in connections.

Similarly, the notations (c1.ip,ci.ip′) ∈ Con∗ and (ci.op′,c1.op) ∈ Con∗ refer to a
(possibly) empty sequence of in-to-in and out-to-out connections, respectively.

4.4 Traces
Given a set of data variables V (with typ(v) ∈ AbsTyp for every v ∈ V) and a set of
events E, a trace over V and E is a sequence σ = s0,e0,s1,e1, . . . such that:

• for all i≥ 0, si is an assignment to V ∪{T},

• for all i≥ 1, ei is an event in E ∪{δ},

• the sequence s0(T),s1(T), . . . is weakly monotonic and diverging,

68

• for all i≥ 1 if ei = δ then si(V) = si−1(V),

• for all i≥ 1 if ei 6= δ then si(T) = si−1(T).

The trace defines a continuous behavior, i.e. a state σ(i, t) for every i≥ 0, si(T)≥
t ≥ si+1(T), defined as: for all v∈V , if typ(v)∈ AbsDTyp, then σ(i, t)(v) = si(v), while
if typ(v) ∈ AbsATyp and si(v) = f , then σ(i, t)(v) = f (t).

4.4.1 Traces of an EDA

Given an EDA A= 〈M,m0,X,v0,χ,ϕ,E,−→,⇒,blk〉, let VA := {vM}∪X and EA :=
E ∪ {τ,@}, where vM is a variable whose domain is M. A trace of A is a trace
s0,e0,s1,e1, . . . over VA and EA such that:

• s0(vM) = m0 and s0(X) = v0,

• for all i≥ 0, t ≥ 0, σ(i, t) |= χ(si(vM)),

• for all i≥ 0, t ≥ 0, dσ(i,t)
dt = ϕ(si(vM)),

• for all i≥ 0, if ei 6= δ , then either of the following holds:

– internal or event transition:
∗ ei ∈ Eτ and

∗ there exists si(vM)
e,g, f−→ si+1(vM) in A such that si(X) |= g, si+1(X) =

f (si(X)), and si+1(vM) |= χ(si+1(vM)).
– non-blocking transition:
∗ ei 6∈ blk and

∗ there exists no si(vM)
e,g, f−→ si+1(vM) in A such that si(X) |= g, si+1(X)=

f (si(X)), and si+1(vM) |= χ(si+1(vM)).
– reactivation transition:
∗ ei = @,

∗ there exists si(vM)
f
⇒ si+1(vM) in A such that si+1(X) = f (si(X)), and

si+1(vM) |= χ(si+1(vM)).

4.4.2 Traces of a Model Instance

If the root instance is a component type c ∈ CTyp, then the model traces are the traces
of the set of variables V (c) := DPrt(c) and the events E(c) = EPrt(c)∪{τ}.

If the root instance is an atomic component implementation im ∈ CImpl, then the
model traces are the traces of the set of variables V (im) := Dat(im)∪{mode} and the
events E(im) = EPrt(im)∪{τ}.

If the root instance is a component implementation im ∈ CImpl, then the model
traces are the traces of the set of variables and events defined recursively as follows:

• V (im) = Dat(im)∪{mode}∪{sc.v | sc ∈ CSub(im),v ∈V (typ(sc))},

• E(im) = EPrt(im)∪{τ}∪{sc.e | sc ∈ CSub(im),e ∈ E(typ(sc))}.

69

4.5 Temporal Formulas
Global symbols in Σ are interpreted, as in standard first-order logic, by an interpre-
tation mapping I that maps each symbol in a constant or functions in the struc-
ture corresponding symbol’s type. For example, if f is a function symbol with type
typ(f) = R,B, then I is a function from reals to Boolean values.

Given an interpretation mapping I and a trace σ = s0,e0,s1,e1, . . ., let π := 〈I ,σ〉.
π |= φ iff π0 |= φ , which is defined as follows:

σi(v) = si(v)
σi(c) = c
σi(f (t)) = I (f)(σi(t))
σi(t1 ? t2) = σi(t1)?σi(t2)
σi(t ′) = σi+1(t)
σi(Bφ) = σ j(T)−σi(T) where j is the smallest index ≥ i such that σ j |= φ

σi(ld(e)) = σ j(data(e)) where j is the biggest index ≤ i such that σ j(e) is
true, or σi(ld(e)) = I (ld(e)) if such j does not exist

σi |=>
σi 6|=⊥
σi |= e iff e = ei
σi |= t1 ./ t2 iff σi(t1) ./ σ2(t2)
σi |= ¬φ iff σi 6|= φ

σi |= φ1∧φ2 iff σi |= φ1 and σi |= φ2
σi |= φ1∨φ2 iff σi |= φ1 or σi |= φ2
σi |= φ1→ φ2 iff σi 6|= φ1 or σi |= φ2
σi |= Gφ iff for all j ≥ i σ j |= φ

σi |= Fφ iff there exists j ≥ i σ j |= φ

σi |= φ1 U φ2 iff for some j ≥ i, σ j |= φ2 and for all 0≤ k < j, σ k |= φ1
σi |= Oφ iff there exists j, 0≤ j ≤ i, σ j |= φ

σi |= φ1 S φ2 iff for some j, 0≤ j ≤ i, σ j |= φ2 and
for all j < k ≤ i, σ k |= φ1

4.6 Probabilistic semantics
The probabilistic semantics of SLIM are defined in terms of a Markov Chain, more
specifically an Interactive Markov Chain (IMC). In effect, the reachable state space of
the NEDA is transformed into a transition system, which is extended with probabilistic
transitions with exponential distribution based on the rates attached to error events.
Probabilistic models are only supported for NEDA which do not contain any timed
transitions. When probabilistic analysis is performed, such transitions are ignored.

An interactive Markov chain is defined as the tuple I = (S,Act,→,⇒,s0), where

• S is the set of states of the Markov chain;

• Act the set of possible actions including the internal action τ;

• →⊆ S×Act×S the action transition relation;

70

• ⇒⊆ S×R>0×S the Markovian (or probabilistic) transition relation;

• s0 the initial state.

Let N = ((Ai)i∈[n],α,EC,DD) be a NEDA. Taking the labeled transition system
(Cnf ,κ0,L,=⇒) imposed by N, we define I as follows:

• S = Cnf ;

• Act = L\R;

• →= {(κ× l×κ) | (κ, l,κ ′) ∈=⇒}, where l not associated with an error rate and
l 6∈ R;

• ⇒= {(κ×λ ×κ) | (κ, l,κ ′) ∈=⇒}, where l ∈ E is associated with an error rate
λ ∈ R>0;

• s0 = κ0.

The states of the IMC are simply the possible configurations of the NEDA. The
transitions of the NEDA are separated into action transitions, and Markovian transi-
tions. Transitions which are labeled by an error event which has been associated with
a rate λ are transformed into Markovian transitions and timed transitions are ignored.
Otherwise an action transition is added.

4.6.1 Maximal Progress

When there is a state s∈ S such that (s, l,s′)∈→∧(s,λ ,s′′)∈⇒ (for some s′,s′′ ∈ S, l ∈
L, and λ ∈ R), the probabilistic transition (s,λ ,s′′) will be ignored. This is due to the
maximal progress assumption, where it is assumed that an action l ∈ Act takes zero
time to execute. As it holds that the probability of the time for transition (s,λ ,s′′) to
be zero is exactly zero (i.e. 1− eλ t with t being 0), it is assumed that transition (s, l,s′)
will always be taken.

71

5 Comparison with AADL
Though SLIM strives to be compliant with AADL, there are some differences between
the two languages. This section gives an overview of the differences between the two
languages.

The primary difference lies in the fact that SLIM only supports a subset of AADL.
To name a few, flows, feature groups and subprograms do not occur in SLIM. In Table 9
an indication is given of supported elements. More constructs may be available in
AADL that are not listed here. For a full overview, refer to [RD6].

Other differences in syntax can primarily be summarized as follows:

• Expressions as data port connection sources;

• States and state transitions;

• Port connection semantics;

• Error models;

• Predefined properties;

• Case sensitivity, with lowercase keywords;

• Some extra reserved keywords that otherwise are valid identifiers in AADL.

As SLIM uses its own behavioral semantics, there are some deviations from AADL
to accommodate for this. This relates to the first three items mentioned in the list
above. Port connections are always synchronizing, therefore there is no queuing of
data or events. To avoid problems in the semantics of reading and writing of data, the
source of a data port connection is allowed to be some expression, see Section 2.10.3.
SLIM further defined states and state transitions to reason over data values specified
for a component. They allow modifying data explicitly (with transition effects), guard
transitions and place invariants on states.

A syntax for error models is directly integrated into the language. For details on
these error models, see Section 2.12

SLIM does not interpret the properties that are defined by default for AADL, and
defines a default set of properties on its own (see Section 2.3). Default AADL proper-
ties may still be used, but are not taken into account for analysis.

SLIM is case sensitive. This holds for keywords and identifiers, where keywords
have to be written lowercase. In particular, identifier that differ in casing only are
considered distinguishable. Finally, as SLIM integrates a few extra language concepts,
such as expressions and error models, extra keywords are introduced, which in pure
AADL would be considered valid identifiers.

72

Table 9: Supported AADL constructs
Feature Supported
Annexes N
Property sets Y
Basic properties Y
List and record properties Y
Reference and classifier properties Y
Public/Private Packages Y
Component types and implementations Y
Extending types and implementations N
Thread Y
Thread group Y
Process Y
Data Y
Subprogram N
Subprogram group N
Processor Y
Virtual processor N
Memory Y
Bus Y
Virtual bus N
Device Y
System Y
Abstract Y
Prototypes N
Features Only in or out ports
Flows N
Modes in types N
Subcomponents Y
Subcomponent refinement N
Subcomponent arrays N
Calls N
Connections Partially for port connections, see Section 2.10.2
Flows N
Modes in implementations Y
Inherited modes N
Mode-specific properties N

73

	Introduction
	Concrete Syntax
	Grammar Notation
	Property Sets
	Property types
	Units
	Ranges
	Property type declarations
	Property declarations
	Property constant declarations
	Syntactic Restrictions

	SLIM Defined Property Sets
	Properties Association
	Syntactic Restrictions

	Data Types
	Built-in Data Types
	Data component types
	Data component implementations

	SLIM Expressions
	Basic Expressions
	Temporal Formulas

	System Specifications
	Constant Declarations
	Component Types
	Port Declarations

	Component Implementations
	Subcomponents and Their Physical Bindings
	Event Port Connections
	Data Flows
	Modes, States and Transitions

	Overview of Component Restrictions
	Error modeling
	Error Model Types
	Error Model Implementations
	Fault Injections

	Abstract Syntax
	Data Types
	SLIM Model
	Global Symbols
	Component Types
	Component Implementations
	SLIM Model Instance

	Abstract model corresponding to the concrete specification
	Basic Sets
	Data Types
	Component Types
	Component Implementations

	Temporal Formulas
	Model Extension

	Semantics
	Overview
	Formalizing the Local Behavior of Components
	Event-Data Automata
	Semantics of Event-Data Automata
	Representing the Local Behavior of Component Implementations as Event-Data Automata

	Formalizing the Global Behavior of Systems
	Networks of Event-Data Automata
	Semantics of Networks of Event-Data Automata
	Representing the Global Behavior of Component Implementations as Networks of Event-Data Automata

	Traces
	Traces of an EDA
	Traces of a Model Instance

	Temporal Formulas
	Probabilistic semantics
	Maximal Progress

	Comparison with AADL

