
COMPASS
Correctness, Modeling, and Performance of Aerospace Systems

COMPASS Tutorial
Version 3.0.1

Prepared by
Fondazione Bruno Kessler
RWTH Aachen University

Contents

1 Introduction 3

2 Terminology 4

3 The COMPASS Approach 5
3.1 Space System Engineering . 5
3.2 The COMPASS Approach . 6

4 COMPASS as a Model Checker 9
4.1 Writing the First Model . 9

4.1.1 Adding More States . 13
4.2 Adding Delays . 14
4.3 Running the Toolset . 16
4.4 Loading and Saving Models . 17

4.4.1 Loading Models . 18
4.4.2 Saving Models . 18

4.5 Simulating a Model . 19
4.6 Writing a Property . 21
4.7 Saving Properties . 22
4.8 Loading Properties . 23
4.9 Model Checking a Property . 24
4.10 Deadlock Checking . 26

5 Dealing with Faults 28
5.1 Writing an Error Model . 28
5.2 Adding Probabilities in Error Models . 29
5.3 Modeling Fault Injections . 29
5.4 Loading and Saving Error Models and Fault Injections 30
5.5 Model Extension . 30
5.6 Simulating the Extended Model . 31
5.7 Model Checking the Extended Model . 31
5.8 Fault Tree Analysis . 33
5.9 Fault Tree Evaluation . 35
5.10 Fault Tree Verification . 37
5.11 Failure Mode and Effects Analysis . 38
5.12 Modeling Fault Propagation: TFPGs . 39

5.12.1 Editing TFPGs . 40

1

5.12.2 Loading and Saving TFPGs . 44
5.12.3 Editing TFPG Associations . 45
5.12.4 Loading and Saving TFPG Associations 46
5.12.5 TFPG Behavioral Validation . 47
5.12.6 TFPG Synthesis . 50

6 Probabilistic Verification 51
6.1 Making the Model Reactive . 51
6.2 Probabilistic Properties . 51
6.3 Performability Analysis . 53
6.4 Performability Simulation . 53

7 Fault Detection, Identification and Recovery 56
7.1 Modeling Observables . 56
7.2 Modeling a Controller . 56
7.3 Safety Analysis Revisited . 59
7.4 Modeling Alarms . 60
7.5 FDIR Effectiveness Analysis . 61

7.5.1 Fault Detection Analysis . 64
7.5.2 Fault Isolation Analysis . 65
7.5.3 Fault Recovery Analysis . 67

7.6 Diagnosability Analysis . 68
7.7 Using TFPGs for Diagnosis . 69

8 Contract-Based Design 72
8.1 Contracts Specification . 72
8.2 Contracts Validation . 74
8.3 Specification and Verification of a Contract Refinement 76
8.4 Generating Hierarchical Fault Tree from Contracts 77

9 Hints and Tips 79
9.1 Modeling . 79
9.2 Running the Toolset . 80
9.3 Analysis . 80

2

Chapter 1

Introduction

This tutorial introduces the main features of the COMPASS toolset – it covers both modeling
and verification. It is intended as a hands-on document that can be used as a starting point
to quickly learn how to develop and analyze models in COMPASS. This tutorial does not
cover all the functionalities and options of the COMPASS toolset. It is complemented by the
COMPASS User Manual [3], that can be consulted for a more systematic reference to the
COMPASS toolset.

This document is structured as follows.

• Chapter 2 lists the (abbreviated) terms that are applied in this document.

• Chapter 3 presents an overview of COMPASS and the COMPASS workflow.

• Chapter 4 introduces the SLIM language, and discusses how to write properties and
perform the basic simulation and verification analyses.

• Chapter 5 deals with the specification of faults and errors, fault propagation, and intro-
duces model-based safety assessment.

• Chapter 6 discusses how to write models with probabilities, and perform probabilistic
analyses and safety assessment.

• Chapter 7 introduces Fault Detection, Identification and Recovery (FDIR) and the re-
lated notions of observability, alarms, diagnosis and diagnosability.

• Chapter 8 presents the COMPASS workflow based on contract-based development.

• Finally, Chapter 9 contains a list of recommendations and advice that will help the
reader address the most common pitfalls that can be encountered.

3

Chapter 2

Terminology

The following acronyms are used or are relevant in this document.

AADL Architecture Analysis and Design Language
BDD Binary Decision Diagram
BMC Bounded Model Checking
CLI Command-Line Interface
COMPASS Correctness, Modeling, and Performance of Aerospace Systems
CSL Continuous Stochastic Logic
CSSP Catalogue of System and Software Properties
CTL Computation Tree Logic
ECSS European Cooperation for Space Standardization
EMA Error Model Annex
ESA European Space Agency
FDIR Fault Detection, Identification, and Recovery
FMEA Failure Modes and Effects Analysis
FTA Fault Tree Analysis
GUI Graphical User Interface
LTL Linear Temporal Logic
NuSMV New Symbolic Model Verifier
OCRA Othello Contracts Refinement Analysis
RAMS Reliability, Availability, Maintainability and Safety engineering
SAE International Society of Automotive Engineers
SAT Satisfiability
SLIM System-Level Integrated Modeling
SMT Satisfiability Modulo Theory

4

Chapter 3

The COMPASS Approach

This chapter describes the use of the COMPASS toolset [1] in the development process. We
remark that, in general, there may exist several workflows that are compatible with the use of
COMPASS. Here, we illustrate the basic ingredients of a typical workflow as an example, and
motivate it with reference to ESA standards. Then, in the rest of this tutorial we will show
how COMPASS can be used operationally, to implement this workflow.

3.1 Space System Engineering

ESA and related institutions develop and maintain a series of standards for the manage-
ment, engineering and product assurance in space projects and applications, known as ECSS.
Among others, Standard ECSS-E-ST-10C [4] specifies the system engineering implementation
requirements for space systems and space products development. More concretely, it states
that

“Systems engineering is defined as an interdisciplinary approach governing the
total technical effort to transform a requirement into a system solution. A sys-
tem is defined as an integrated set of elements to accomplish a defined objective.
These elements include hardware, software, firmware, human resources, informa-
tion, techniques, facilities services, and other support elements.”

Moreover [4] partitions system engineering into the following functions:

requirements engineering, which consists of requirements analysis and validation, require-
ments allocation, and requirements maintenance;

analysis, which is performed for the purpose of resolving requirements conflicts, decomposing
and allocating requirements during functional analysis, assessing system effectiveness
(including analyzing risk factors); and complementing testing evaluation and providing
trade studies for assessing effectiveness, risk, cost and planning;

design and configuration, which results in a physical architecture, and its complete system
functional, physical and software characteristics;

verification, whose objective is to demonstrate that the deliverables conform to the specified
requirements, including qualification and acceptance;

5

November 7, 2018 COMPASS Toolset Tutorial 6

system engineering integration and control, which ensures the integration of the vari-
ous engineering disciplines and participants throughout all the project phases.

3.2 The COMPASS Approach

The COMPASS toolset addresses, in a coherent manner, different aspects that are relevant
to the engineering of complex systems, such as co-engineering of hardware and software, per-
formability and dependability, reliability, availability, maintainability and safety engineering
(RAMS). COMPASS offers a multi-disciplinary approach that supports the early design phases
by developing systems at an architecture level. Thus it mainly targets the “requirement en-
gineering” and “analysis” functions of system engineering, but also tackles the “design and
configuration” and “verification” phases.

More concretely, COMPASS provides a specification language that offers convenient ways
to describe nominal hardware and software operation, hybridity, (probabilistic) faults and
their propagation, error recovery, and degraded modes of operation. A system specification is
hierarchically organized into components which interact through connections via ports allowing
for both message (event) and continuous (data) communication, and which can be reconfigured
dynamically. The specification formalism is inspired by the Architecture Analysis and Design
Language AADL [10] and its Error Model Annex [11]. It is named System-Level Integrated
Modeling (SLIM) Language.

SLIM is equipped with a formal semantics that opens up the possibility to apply a wealth
of formal methods for various kinds of verification and validation activities. The latter are
supported by an integrated toolset that supports the following functionalities (see Figure 3.1
for an overview). The list also provides references to the corresponding ECSS standards.

Requirements Validation: In order to ensure the quality of requirements, they can be
validated independently of the system. This includes both property consistency (i.e.,
checking that requirements do not exclude each other), property assertion (i.e., checking
whether an assertion is a logical consequence of the requirements), and property possi-
bility (i.e., checking whether a possibility is logically compatible with the requirements).
Altogether these features allow the designer to explore the strictness and adequacy of
the requirements. Expected benefits of this approach include traceability of the require-
ments and easier sharing between different actors involved in system design and safety
assessment. Furthermore, high-quality requirements facilitate incremental system devel-
opment and assessment, reuse and design change, and they can be useful for product
certification.

Functional verification: Analyzing operational correctness is the first step to be performed
during the system development lifecycle. It consists in verifying that the system will
operate correctly with respect to a set of functional requirements, under the hypothesis
of nominal conditions, that is, when software and hardware components are assumed
to be fault-free. One particular instance of this general model-checking problem that is
specifically supported by the toolset is deadlock checking, i.e., ensuring that the system
does not give rise to terminating computations. This is usually required for reactive
systems. Moreover the toolset offers the feature to interactively simulate the execution
of the system.

November 7, 2018 COMPASS Toolset Tutorial 7

System/
HW/SW

Nominal
Model

Error Model
Fault

Injection
Properties

Safety/
Dependability

Extended
Model

Symbolic
Trans. System

Markov
Chain

Temp. Logic
Formulas

Formal Models

Fault Management

Effectiveness

- Fault detection
- Fault isolation
- Fault recovery
- Diagnosability
- TFPG analysis

Properties
Validation

- Consistency check
- Possibility check
- Assertion check
- Contract-based
refinement (and
tightening)

Safety &

Dependability

- Dynamic fault tree
analysis (FTA)
- Dynamic FMEA
- Fault tolerance

Performability

Analyses

- Performance
evaluation
- Probabilistic risk
- Probabilistic
assessment FTA

Input

Intermediate
Artefact

Analysis/
Output

Functional

Correctness

- Model checking
(discrete/hybrid)
- Simulation
- Deadlock checking
- Contract-based
verification

Figure 3.1: Overview of COMPASS Toolset Functionalities

Safety and Dependability Analysis [7, 5, 9, 8]: Analyzing system safety and depend-
ability is a fundamental step that is performed in parallel with system design and veri-
fication of functional correctness. The goal is to investigate the behavior of a system in
degraded conditions (that is, when some parts of the system are not working properly,
due to malfunctions) and to ensure that the system meets the safety requirements that
are required for its deployment and use. Key techniques in this area are (dynamic) fault
tree analysis, (dynamic) Failure Modes and Effects Analysis (FMEA), fault tolerance
evaluation, and criticality analysis.

Performability Analysis [6]: To guarantee the required system performance in the pres-
ence of faults, integrated hardware and software models can be evaluated with respect
to their performance behavior in degraded modes of operation. In line with the ap-
proach for the functional correctness, again model checking techniques are employed for
assessing this type of requirements.

Fault Detection, Identification and Recovery Analysis [5]: System models can include
a formal description of both the fault detection and identification sub-systems, and the
recovery actions to be taken. Based on these models, tool facilities are provided to ana-
lyze the operational effectiveness of the (probabilistic) FDIR measures, and to investigate
the observability requirements that make the system diagnosable.

In summary, the overall process of analyzing system specifications involves the following

November 7, 2018 COMPASS Toolset Tutorial 8

steps:

1. SLIM specifications (describing the nominal and, if applicable, the error behavior) are
entered using a text editor, and are saved to one or more files.

2. Files are loaded into the toolset.

3. If error behavior has to be considered, nominal and error models are related by means
of fault injections.

4. To interactively explore the dynamic behavior of the system, the model simulation fea-
ture of the toolset can be employed.

5. Some of the subsequent analyses require writing properties. COMPASS offers several
ways to specify such properties.

6. Finally, depending on the type of the system, a plethora of analyses can be applied.

In the rest of this tutorial, we show how COMPASS can be used to implement these steps
and we illustrate the analyses that it supports.

Chapter 4

COMPASS as a Model Checker

In this chapter, we explain the basics of the COMPASS toolset: how to run COMPASS, how
to write and manage models in SLIM, how to specify properties, and how to run simulations
and to verify properties.

4.1 Writing the First Model

We use the battery sensor model, for exemplification. The model architecture is illustrated
in Figure 4.1. It consists of a redundant pair of sensors powered by a redundant pair of

Figure 4.1: Battery sensor model.

batteries, charged by dedicated generators. A pair generator/battery is called a PSU (Power
System Unit). A hypothetical device that depends on these sensor readings is assumed to
be operational (alive) provided that at least one sensor is working correctly (providing a
reading). A generator failure causes a permanent loss of power supply, and a sensor failure
causes a permanent loss of its reading. In absence of power supply, a battery starts discharging;
when depleted, the corresponding sensor stops working. The battery sensor model has three
modes: primary, secondary1 and secondary2. In primary mode, sensors are powered by the
corresponding battery they are initially connected to; in case of failure of one battery, the
system may be reconfigured (secondary modes 1 and 2 – connections indicated with dotted
lines), so that both sensors are powered by the same battery (the one that did not fail).

9

November 7, 2018 COMPASS Toolset Tutorial 10

COMPASS models are written in the SLIM language. For a complete account of SLIM,
we refer the reader to the user manual [3], and the syntax and semantics document [2], both
included in the COMPASS distribution.

The models presented here can be found in the documentation/examples/battery sensor

folder – see models system discrete simple.slim, system discrete.slim and system.slim

and the other accompanying files. We remark that, below, we introduce these models in suc-
cessive steps, therefore some parts may be omitted and described later on in this tutorial.

SLIM enables the separate definition of the interface and implementation of component
models. We start by defining the interface of some basic components. Figure 4.2 defines the
interface of the generator, battery and sensor components. We use the keyword system that
models a generic component, note however that SLIM enables the definition of ad-hoc software
or hardware component types.

The generator is simply a source of power; this is modeled by means of a (Boolean) output
data port, named has_power, which is true by default (we remark that, for the time being, we
are modeling the nominal behavior; faults will be introduced later, in Chapter 5). The battery
and sensor are modeled in a similar fashion. They both have an input data port for modeling
input power. The battery also has an input data port called zero_consumption (modeling no
consumption when the battery is disconnected from the sensors) and a low output data port
(true if the charge level of the battery is low). The sensor has an output data port reading

that is true if the sensor is providing a reading.

system Generator

features

has_power: out data port bool {Default => "true";};

end Generator;

system Battery

features

has_power_out: out data port bool {Default => "true";};

has_power_in: in data port bool {Default => "true";};

zero_consumption: in data port bool {Default => "false";};

low: out data port bool {Default => "false";};

end Battery;

system Sensor

features

reading: out data port bool {Default => "true";};

has_power: in data port bool {Default => "true";};

end Sensor;

Figure 4.2: Battery sensor model: basic components.

Figure 4.3 models the implementation of the components described so far. The generator
implementation does not contain further specifications, whereas the battery and sensor imple-
mentations specify the behavior of the corresponding components using states and transitions.
A battery has three possible states (modeling the charge level): full, low_ and empty. The

November 7, 2018 COMPASS Toolset Tutorial 11

initial state is full. A transition models a state change, which may be triggered by an input
event, may be conditioned by an input condition and may also define an output effect. For
instance, the second transition models the fact the a fully charged battery, in absence of input
power and when connected to a sensor, can move to state low_; as an effect, the battery still
has output power, but the low output port becomes true. Similarly for the other transitions.
The sensor implementation defines a simple state machine with only one state and two possible
transitions; depending on whether input power is present or not, the reading output is set to
true or false.

system implementation Generator.Imp

end Generator.Imp;

system implementation Battery.Imp

states

full: initial state;

low_: state;

empty: state;

transitions

full -[when has_power_in or zero_consumption

then has_power_out := true]-> full;

full -[when not has_power_in and not zero_consumption

then has_power_out := true; low := true]-> low_;

low_ -[when zero_consumption

then has_power_out := true]-> low_;

low_ -[when not zero_consumption

then has_power_out := false]-> empty;

empty -[then has_power_out := false]-> empty;

end Battery.Imp;

system implementation Sensor.Imp

states

base: initial state;

transitions

base -[when has_power then reading := true]-> base;

base -[when not has_power then reading := false]-> base;

end Sensor.Imp;

Figure 4.3: Battery Sensor model: basic components’ implementation.

Figure 4.4 models the PSU component. A PSU (Power System Unit) groups a generator
and a battery. The interface of a PSU specifies an input data port zero_consumption, with
the same meaning as for the battery, and an output data port has_power, modeling the
presence of output power.

The generator and the battery are connected together in the component implementa-
tion. A PSU implementation instantiates two sub-components of type Battery.Imp and
Generator.Imp. The two sub-components are connected in such a way that the output power

November 7, 2018 COMPASS Toolset Tutorial 12

of the generator is connected with the input power of the battery, and the output power of the
battery is connected with the output power of the PSU. Port zero_consumption is connected
with the corresponding port of the battery.

system PSU

features

has_power: out data port bool;

zero_consumption: in data port bool {Default => "false";};

end PSU;

system implementation PSU.Imp

subcomponents

battery: system Battery.Imp;

generator: system Generator.Imp;

connections

port generator.has_power -> battery.has_power_in;

port battery.has_power_out -> has_power;

port zero_consumption -> battery.zero_consumption;

end PSU.Imp;

Figure 4.4: Battery sensor model: PSU.

Figure 4.5 puts all components together into a complete system. The system interface has
the following data ports: is_alive tracks whether the system is alive (at least one sensor
is providing an output), whereas mode_selector is an enumerative output data port that
models the system configuration (primary or secondary). Moreover, there are two input event
ports called go_to_secondary1 and go_to_secondary2 that models input events that trigger
system re-configuration.

The system implementation instantiates two instances of the sensor component and two in-
stances of the PSU component. Furthermore, it defines three different modes, namely primary,
secondary1 and secondary2. Modes are in spirit similar to states for sub-components, but
it has to be remarked that states cannot be used within composite components, but only
in leaf components. The connections link the output power of the two PSU with the input
power of the two sensors. The transition relation specifies mode re-configuration, which has
also the effect of changing mode_selector. It is interesting to remark that the connections
are mode dependent: for instance, in mode secondary1, component psu1 feeds both sensors.
Moreover, the flow section defines the value of is_alive (true if at least one sensor provides
a reading) and zero_consumption of the two PSU (true, respectively, in mode secondary2

and secondary1).
Finally, Figure 4.6 encloses the overall system into a further component called Enclosure

which exports only the re-configuration events at the interface. Note that these events are left
free, hence they can be triggered by the external environment1.

1We will come back to this point in Chapter 7, when we connect the system with a controller that can
re-configure the system.

November 7, 2018 COMPASS Toolset Tutorial 13

system System

features

is_alive: out data port bool;

mode_selector:

out data port enum(Primary, Secondary1, Secondary2)

{Default => "Primary";};

go_to_secondary1: in event port;

go_to_secondary2: in event port;

end System;

system implementation System.Imp

subcomponents

sensor1: system Sensor.Imp;

sensor2: system Sensor.Imp;

psu1: system PSU.Imp;

psu2: system PSU.Imp;

connections

port psu1.has_power -> sensor1.has_power

in modes (primary, secondary1);

port psu1.has_power -> sensor2.has_power

in modes (secondary1);

port psu2.has_power -> sensor1.has_power

in modes (secondary2);

port psu2.has_power -> sensor2.has_power

in modes (primary, secondary2);

flow sensor1.reading or sensor2.reading -> is_alive;

flow true -> psu1.zero_consumption in modes (secondary2);

flow true -> psu2.zero_consumption in modes (secondary1);

modes

primary: initial mode;

secondary1: mode;

secondary2: mode;

transitions

primary -[go_to_secondary1

then mode_selector := Secondary1]-> secondary1;

primary -[go_to_secondary2

then mode_selector := Secondary2]-> secondary2;

end System.Imp;

Figure 4.5: Battery sensor model: system level.

4.1.1 Adding More States

We modify the previous model, introducing additional states and transitions, since we want
to specify a battery may discharge at different rates, depending on whether it is powering one
or two sensors. For simplicity, we then split the low_ state of a battery into low_single and

November 7, 2018 COMPASS Toolset Tutorial 14

system Enclosure

features

go_to_secondary1: in event port;

go_to_secondary2: in event port;

end Enclosure;

system implementation Enclosure.Imp

subcomponents

sys: system System.Imp;

connections

port go_to_secondary1 -> sys.go_to_secondary1;

port go_to_secondary2 -> sys.go_to_secondary2;

end Enclosure.Imp;

Figure 4.6: Battery sensor model: top-level enclosure.

low_double. Similarly, we introduce a port called double_consumption, that drives the state
of the battery. The battery and PSU interfaces are extended with this port (see Figure 4.7).

system Battery

features

[...]

double_consumption: in data port bool {Default => "false";};

end Battery;

system PSU

features

[...]

double_consumption: in data port bool {Default => "false";};

end PSU;

Figure 4.7: Battery sensor model: double consumption ports.

The new battery states low_single and low_double are declared, and the transition
relation is extended accordingly (see Figure 4.8): the value of the double_consumption input
port controls whether the battery mode changes from full to low_single or low_double.
The PSU implementation requires drawing one more connection (see Figure 4.9). Finally,
the system implementation (Figure 4.10) sets the value of the double_consumption port
depending on the system mode.

4.2 Adding Delays

We extend the battery sensor model, using clocks to model temporal delays for the discharging
of the batteries and for failure propagation in the sensors. This extension enables a more
faithful modeling of the dynamics of the underlying system.

November 7, 2018 COMPASS Toolset Tutorial 15

system implementation Battery.Imp

states

full: initial state;

low_single: state;

low_double: state;

empty: state;

transitions

full -[when has_power_in or zero_consumption

then has_power_out := true]-> full;

full -[when not has_power_in and

not double_consumption and

not zero_consumption

then has_power_out := true; low := true]-> low_single;

full -[when not has_power_in and

double_consumption and

not zero_consumption

then has_power_out := true; low := true]-> low_double;

low_single -[when zero_consumption

then has_power_out := true]-> low_single;

low_single -[when not zero_consumption

then has_power_out := false]-> empty;

low_double -[when zero_consumption

then has_power_out := true]-> low_double;

low_double -[when not zero_consumption

then has_power_out := false]-> empty;

empty -[then has_power_out := false]-> empty;

end Battery.Imp;

Figure 4.8: Battery sensor model: double consumption.

system implementation PSU.Imp

[...]

connections

[...]

port double_consumption -> battery.double_consumption;

end PSU.Imp;

Figure 4.9: Battery sensor model: double consumption port connection.

The sensor model implementation (Figure 4.11) is extended by declaring a clock called
delay. The state of the sensor is modified so that it is updated every time unit; this is realized
by adding an invariant delay <= 1 that has to be true in the base state and conditioning the
transitions with the condition delay >= 1, that has to be true when triggering the transition.
The combined effect of the invariant and the condition, in this model, is that the transitions
will be taken precisely every time unit. Notice that, upon taking a transition, the assignment

November 7, 2018 COMPASS Toolset Tutorial 16

system implementation System.Imp

[...]

connections

[...]

flow true -> psu1.double_consumption in modes (secondary1);

flow true -> psu2.double_consumption in modes (secondary2);

[...]

end System.Imp;

Figure 4.10: Battery sensor model: double consumption definition.

delay := 0 restarts the clock.

system implementation Sensor.Imp

subcomponents

delay: data clock;

states

base: initial state while (delay <= 1);

transitions

base -[when delay >= 1 and has_power

then delay := 0; reading := true]-> base;

base -[when delay >= 1 and not has_power

then delay := 0; reading := false]-> base;

end Sensor.Imp;

Figure 4.11: Battery sensor model: sensor delay.

We do a similar thing for the battery model implementation (Figure 4.12). Here, we use
different delays for different states of the battery: in mode full the battery will take 3 time
units before the charge level becomes low. Moreover, depending on the whether the battery is
connected to one or two sensors, the battery will discharge with different rates (2 time units
or 1 time unit, are needed, respectively, to reach the empty state).

4.3 Running the Toolset

The COMPASS toolset provides a graphical user interface (GUI) written in python. The
executable of the GUI can be found in the scripts directory. For a quick start, the GUI can
be run as follows:

$ python scripts/compassw.py

This launches the main window of the COMPASS toolset (see Figure 4.13).
It requires the installation of Python version 2.7 or higher – plus other libraries. For an

exhaustive list of all the requirements we refer to Section 3.1 in the user manual.
The GUI executable accepts also many command-line options – see Section 3.5 in the

manual for a complete list.

November 7, 2018 COMPASS Toolset Tutorial 17

system implementation Battery.Imp

subcomponents

delay: data clock;

states

full: initial state while (delay <= 3);

low_single: state while (delay <= 2);

low_double: state while (delay <= 1);

empty: state while (delay <= 1);

transitions

full -[when delay >= 1 and (has_power_in or zero_consumption)

then delay := 0 ; has_power_out := true]-> full;

full -[when delay >= 3 and

not has_power_in and

not double_consumption and

not zero_consumption

then delay := 0;

has_power_out := true;

low := true]-> low_single;

full -[when delay >= 3 and

not has_power_in and

double_consumption and

not zero_consumption

then delay := 0;

has_power_out := true;

low := true]-> low_double;

low_single -[when delay >= 1 and zero_consumption

then delay := 0;

has_power_out := true]-> low_single;

low_single -[when delay >= 2 and not zero_consumption

then delay := 0; has_power_out := false]-> empty;

low_double -[when delay >= 1 and zero_consumption

then delay := 0; has_power_out := true]-> low_double;

low_double -[when delay >= 1 and not zero_consumption

then delay := 0; has_power_out := false]-> empty;

empty -[when delay >= 1

then delay := 0; has_power_out := false]-> empty;

end Battery.Imp;

Figure 4.12: Battery sensor model: battery delay.

4.4 Loading and Saving Models

The Model pane of the toolset is displayed on startup (as depicted in Figure 4.13).

November 7, 2018 COMPASS Toolset Tutorial 18

Figure 4.13: Main window of the COMPASS Toolset.

4.4.1 Loading Models

A SLIM model can be edited using an external editor. Once edited, it can be loaded using
the Add button. Let us now load the system discrete model in the GUI of the COMPASS
toolset, by going through the following steps.

Steps

• Load the GUI

• Click the Add button below the Loaded Files section in the window

• The Open SLIM Files window opens

• Select the file documentation/examples/battery sensor/system discrete.slim

• Click Open

• On the Output Console a message confirming the loading is shown. The different root
components appear in the Root pane; the root default ::Enclosure.Imp is selected
by default (see Figure 4.14) (default is used as a prefix for components not inside
a package).

4.4.2 Saving Models

A model can be saved as follows.

November 7, 2018 COMPASS Toolset Tutorial 19

Figure 4.14: Main Window of the COMPASS toolset with model system discrete loaded.

Steps

• Load the GUI and a model

• Open the File menu

• Select the Save SLIM Model as... button; a dialog pops up asking for the name of the
file to save the model to (see Figure 4.15)

• Click Save; the specified file has been created

4.5 Simulating a Model

Simulating a model is typically a useful starting point to check that its behavior corresponds
to the intended one. The COMPASS toolset allows the user to carry out three different
simulation activities:

• random simulation, in which the values of the model signals are chosen automatically

• guided by transition simulation, in which the user can explicitly force the system’s be-
havior by picking one of the available transitions

November 7, 2018 COMPASS Toolset Tutorial 20

Figure 4.15: Pop-up window to save a model.

• guided by values simulation, in which the values of the model signals can be forced by
the user in order to verify the behavior of the system under specific scenarios

Let us run a random simulation of the system discrete example, as follows.

Steps

• Load the model as shown in Section 4.4.1

• Click on the Correctness tab; the Model Simulation pane is shown

• Select Random as type of simulation and 10 as Length

• Click the Run button

• A trace like the one shown in Figure 4.16 is displayed as a table where the first column
provides the name of the model elements and the remaining columns give their values,
for each step of the simulation. Boolean stripes are shown with a waveform with two
values, the “high” one for true and the “low” one for the false.

November 7, 2018 COMPASS Toolset Tutorial 21

Figure 4.16: Random simulation trace created for the system discrete example.

We refer to Section 9.4.1 and 9.4.2 of the user manual for a more detailed explanation
about traces and the other types of simulation.

4.6 Writing a Property

The COMPASS interface provides different ways to write properties. They provide different
levels of assistance, ranging from requiring only some design parameters to be specified (CSSP)
to inputting formal properties directly. At the basic level, formal properties can be specified
directly using the SLIM expression language. This provides the most flexible approach, but
requires a strong technical knowledge. Property patterns provide a fixed structure, depending
on a few parameters, in which placeholders can be filled in to specify some formal property,
accompanied by a human readable description. Finally, the CSSP (Catalogue of System and
Software Properties) can be used, which simply requires some model parameters to be filled
in, such as time delays or expected ranges of port values.

All three kinds properties can be specified from the Properties pane under the Properties
tab. Furthermore, the Requirements pane provides a Wizard button that helps with a step-
by-step approach to specifying properties.

For the purpose of this tutorial, let us now define a property for the system discrete

example using property patterns. We want to specify that the system is always alive, that is,
the atomic proposition sys.is_alive always holds. We do so as follows.

Steps

• Load the model as shown in Section 4.4.1

• Click on the Properties tab; the Requirements pane is shown.

November 7, 2018 COMPASS Toolset Tutorial 22

• On the left, select the component Enclosure.Imp

• Click on the Properties sub-pane

• Click the bottom-most Add button; define the property system always alive as shown
in figure 4.17

• Click the button Save; the name of the properties appears in the bottom-most pane,
and a “(1)” is shown next to the name Enclosure.Imp on the left to specify that one
property has been added for that component (see Figure 4.18)

Figure 4.17: Adding the property system always alive for the system discrete example.

4.7 Saving Properties

Properties are saved along with the model, in the same file(s). For instance, let us save the
system discrete model, with the property we have just defined, as follows.

Steps

• Click the File menu

• Select item Save SLIM model as ...

• Insert the name system discrete with prop.slim and save the modified model to the
desktop

If we open the model we have saved, we can see that it includes the property, see Figure 4.19.

November 7, 2018 COMPASS Toolset Tutorial 23

Figure 4.18: Properties pane after the property system always alive has been added.

...

system implementation Enclosure.Imp

subcomponents

sys: system System.Imp;

connections

port go_to_secondary1 -> sys.go_to_secondary1;

port go_to_secondary2 -> sys.go_to_secondary2;

properties

Patterns => ([Name => "system_always_alive"; Pattern =>

"Globally, it is always the case that {sys.is_alive} holds ";]);

end Enclosure.Imp;

...

Figure 4.19: Battery sensor model with one property.

4.8 Loading Properties

Properties are loaded along with the model, since they are stored in the same file(s). For
backward compatibility, it is possible to load properties from an xml file. For instance, model
system discrete comes with a property file system discrete.propxml, that can be loaded
as follows.

November 7, 2018 COMPASS Toolset Tutorial 24

Steps

• Load the model as shown in Section 4.4.1

• Click on the Properties tab; the Requirements pane is shown (empty)

• Click on the File menu

• Select item Load Properties ... and load properties in file system discrete.propxml

• Click on the Properties sub-pane

• On the left, the #Prop. column shows that 16 properties have been loaded for component
Enclosure.Imp

• Click on the item Enclosure.Imp (see Figure 4.20)

• The following generic properties have been loaded:

– TLE: Not is alive

Under the Pattern properties sub-pane, the following properties are present:

– always System is alive

– never PSUA Low

– never PSUA empty

– . . .

4.9 Model Checking a Property

Model checking is used to check a SLIM model against one or more properties. The purpose
of model checking is to formally verify that all the behaviors admitted by the model do
verify the properties at hand and, if not, generate an execution trace that shows a violation
(i.e, counterexample). A counterexample is useful to identify the reason for a violation and
understand whether the it is an expected or an unexpected behavior of the system. If the
violation is unexpected, it may be either be due to a flaw in the system specification, or a
mistake in the encoding of the system as a formal model. In the former case, this may trigger
a change in the system specification (and in the model, as a consequence), in the latter case
it probably requires a revision of the formal model.

In order to run property verification, it is first required to define some properties in the
Properties tab, or to load a model already containing some properties. Depending on the
semantics of the model (finite or infinite), different engines can be selected and are properly
enabled or disabled. For each engine, different options may be selected; see Section 9.4.4 in
the user manual for a complete description of all the choices. In the following, we show an
example using the system discrete model.

November 7, 2018 COMPASS Toolset Tutorial 25

Figure 4.20: List of properties in system discrete.propxml file.

Steps

• Load the model as shown in Section 4.4.1

• Open the File menu and load the properties contained in file
documentation/examples/battery sensor/system discrete.propxml

• Click on the Correctness tab and select the Model Checking pane

• The following properties are shown on the left Properties pane:

– TLE: Not is alive

– always System is alive

– never PSUA Low

– never PSUA empty

– never Not is alive

– never Secondary1

– always Generator.has power

– never Low double

• Select the property always System is alive; this property states that the variable
is alive is always true.

November 7, 2018 COMPASS Toolset Tutorial 26

• Disable the Model Extended by Fault Injections checkbox

• Expand Model Checker Options and select the klive engine

• Click the Run Model Checking button

• The property results to be true (up to bound), as shown in Figure 4.21. The reason is
that we are considering only the nominal behavior of the model; in Section 5.7 we run
the same analysis considering also the error model.

Figure 4.21: Confirmation of the property always System is alive of the system discrete

example.

4.10 Deadlock Checking

Deadlock checking is a useful analysis that allows the user to check for the presence of deadlocks
in a specific SLIM model. The two possible outcomes (presence of deadlocks or absence of
deadlocks) are shown to the user by different messages that appear on the pane; Figure 4.22
shows that no deadlock are present in the system discrete model. The steps to reproduce
this result are as follows.

Deadlock checking is important as it ensures the correctness of the outcome of model
checking. If there exists a deadlock in the model, some problems may not be found during
model checking. This is described in more detail in Section 9.1 and in the user manual.

Steps

• Load the model as shown in Section 4.4.1

November 7, 2018 COMPASS Toolset Tutorial 27

• Click on the Correctness tab

• Select the Deadlock Checking pane

• Click the Run button

Figure 4.22: Deadlock checking for the system discrete example.

Chapter 5

Dealing with Faults

In this chapter, we explain how to deal with faults: specifying faults and fault events, and
how to automatically extend a model with fault definitions. We also introduce Timed Failure
Propagation Graphs (TFPGs), a formalism to model failure propagation.

5.1 Writing an Error Model

The first step is to define one or more error models. An error model defines possible errors
that may affect the nominal behavior of the system we are modeling. As for nominal models,
the specification of an error model comprises an interface and an implementation. We define a
simple error model for the battery sensor example, modeling a permanent failure, in Figure 5.1.

The interface of the error model defines a set of error states, ok and dead in this example;
ok is an activation state, that is, it is the default state upon initialization (and re-activation)
of the corresponding component. The implementation of the error model defines error events,
and transitions between error states, that may be guarded by error events. In this example we
define one error event named fault, guarding a transition from state ok to state dead. The
dynamics being permanent is evident from the fact that there is no outgoing transition from
state dead – the fault cannot disappear or be repaired, unless the model is reactivated.

error model PermanentFailure

features

ok: activation state;

dead: error state;

end PermanentFailure;

error model implementation PermanentFailure.Imp

events

fault: error event;

transitions

ok -[fault]-> dead;

end PermanentFailure.Imp;

Figure 5.1: Battery sensor model: permanent error model.

28

November 7, 2018 COMPASS Toolset Tutorial 29

5.2 Adding Probabilities in Error Models

Often, the occurrence of faults can be estimated by statistics, usually by assuming that they
occur with a certain probability. SLIM supports probabilities by means of attaching error
rates in error models, which represent exponential distributions. An error rate associated
with an error event means that the event may occur at a random time as determined by the
exponential distribution.

We start with the discrete battery sensor model, and add an error rate to the error model
as created in Section 5.1, as depicted in Figure 5.2. The error rate is set to 0.01 as per the
keywords occurrence poisson 0.01.

error model implementation PermanentFailure.Imp

events

fault: error event occurrence poisson 0.01;

transitions

ok -[fault]-> dead;

end PermanentFailure.Imp;

Figure 5.2: Battery sensor model: permanent error model with rate.

5.3 Modeling Fault Injections

A fault injection specifies how an error model is paired with a nominal model, and the conse-
quence (effects) of an error on the behavior specified in the nominal specification.

We want to associate a permanent fault to generators and sensors, in the battery sensor
example. We extend the implementation of the generator and sensor (nominal) models, as
shown in Figure 5.3. A fault injection consists of two parts: the association with the error
model (PermanentFailure.Imp) and a specification of the effects of the errors. For the gen-
erator model, we specify that, when the component is in state dead, the has_power output
is set to false (no output power), whereas for the sensor model, we specify that, when the
component is dead, its output reading is set to false (no reading).

It is also possible to edit fault injections using the GUI interface. For instance, let us show
how to edit the effect of the fault injection for the generator.

Steps

• Load the model as shown in Section 4.4.1

• Click the Edit button

• In the pop-up window, expand the default element

• Select Generator.Imp

• Change the Effect value from false to true

November 7, 2018 COMPASS Toolset Tutorial 30

system implementation Generator.Imp

properties

ErrorModel => classifier(PermanentFailure.Imp);

FaultEffects => ([State=>"dead";

Target=>reference(has_power);

Effect=>"false";]);

end Generator.Imp;

system implementation Sensor.Imp

[...]

properties

ErrorModel => classifier(PermanentFailure.Imp);

FaultEffects => ([State=>"dead";

Target=>reference(reading);

Effect=>"false";]);

end Sensor.Imp;

Figure 5.3: Battery sensor model: permanent error model.

• Click the Save button; the new effect value is visible in the GUI by expanding again the
default element and selecting Generator.Imp

• We can also save the changes by overwriting or saving the model with a different name
as shown in Section 4.4.2

5.4 Loading and Saving Error Models and Fault Injec-

tions

Error models and fault injections can be loaded and saved along with a SLIM model, and they
are stored in the same file(s) – see Section 4.4.2.

5.5 Model Extension

Model extension is the automatic process of injecting the faults – according to the fault
injections specifications – into the nominal model. The outcome of model extension is an
extended model, a SLIM model that incorporates both nominal and faulty behaviors into a
single model. Model extension is performed “behind the scenes”, in a transparent manner,
every time the user wants to run an analysis on the extended model. Intuitively, the idea of
model extension is that the nominal and error model are running concurrently, i.e., the state
space of the extended model consists of pairs of nominal and error states, and each transition
in the extended model is due to either to a nominal transition or an error transition.

November 7, 2018 COMPASS Toolset Tutorial 31

Figure 5.4: Fault injections for the system discrete example.

5.6 Simulating the Extended Model

The extended model can be simulated in a similar manner as for the nominal model – compare
Section 4.5. In the trace, faults and signals of error sub-components are marked in red. For
instance, a simulation trace for the battery sensor example is shown in Figure 5.5.

5.7 Model Checking the Extended Model

Similarly as for the nominal model, an extended model can be verified against a set of prop-
erties. Usually, properties that are satisfied nominally, may be not satisfied in presence of
faults. For instance, we may expect that the battery sensor system may be not always alive,
as a consequence of possible faults.

Let us see an example.

Steps

• Load the model as shown in Section 4.4.1

• Open the File menu and load the properties contained in file
examples/battery sensor/system discrete.propxml

• Click on the Correctness tab and select the Model Checking pane

• The following properties are shown on the left Properties pane:

November 7, 2018 COMPASS Toolset Tutorial 32

Figure 5.5: Random simulation trace created for the system discrete example (extended
model).

– TLE: Not is alive

– always System is alive

– never PSUA Low

– never PSUA empty

– never Not is alive

– never Secondary1

– always Generator.has power

– never Low double

• Select the property always System is alive; this property states that the variable
is alive is always true

• Enable the Model Extended by Fault Injections checkbox

• Expand Model Checker Options and select the BMC engine

• Click the Run Model Checking button

• The property results to be false; a counterexample trace of length 3 is shown (see Fig-
ure 5.6) in which indeed at step 3 the element sys.is alive becomes false

We can filter the counterexample by showing only the error components, by inserting
“error” in the Filtered types of the filtering pop-up window (we refer to Section 9.4.1 of the
user manual for a complete explanation) obtaining the trace shown in Figure 5.7.

As we can see, in this example the failures of the sensors cause the failure of the entire
system.

November 7, 2018 COMPASS Toolset Tutorial 33

Figure 5.6: Counterexample trace created for the property always System is alive of the
system discrete example (extended version).

Figure 5.7: Example of filtered trace.

5.8 Fault Tree Analysis

Fault Tree Analysis is a traditional safety assessment technique. It is a top-down analysis that,
given an undesired condition (feared event, also known as top-level event) traces it back to the
set of possible causes (basic faults). The fault tree itself is a representation of the (minimal) set
of causes in a tree-like structure, which uses Boolean gates (logical AND and OR) to connect
tree nodes. In COMPASS, a fault tree can be generated, given a (propositional) property
(representing the feared event) and the set of possible faults (those that have been specified

November 7, 2018 COMPASS Toolset Tutorial 34

in the error model(s) and injected by means of fault injection).
Three possible engines and different options are available; they are automatically enabled

or disabled by the COMPASS toolset depending on the semantics of the model.
Let us see an example using the system discrete example. We execute the following steps.

Steps

• Load the model as shown in Section 4.4.1

• Open the File menu and load the properties contained in file
examples/battery sensor/system discrete.propxml

• Click on the Safety tab and select the Fault Tree Generation pane

• Only the property TLE: Not is alive appears on the left (this is because it is the only
propositional property)

• Select the property and click the Generate Fault Tree button

• A fault tree such as the one in Figure 5.8 is created. It shows the sequences of events
that may cause the failure. In this example, there are:

– two branches with a single event that causes the top-level event (in particular, an
individual fault of either of the two generators is a possible cause)

– one branch with a set of two events (linked by an AND gate) that together cause
the top-level event (in particular, a failure of both sensors is a possible cause)

Each possible cause (set of faults) is known as a minimal cut set (MCS).
Fault trees, traditionally, are a qualitative model. However, they can be evaluated in a

quantitative manner, by associating probabilities to the fault events. In COMPASS, it is
possible to evaluate a fault tree by associating static probabilities to fault events, as part of
the analysis. The COMPASS toolset will then automatically evaluate the probability of the
intermediate nodes and of the top-level event of the fault tree.

Let us see how this can be done for the battery sensor example.

Steps

• Load the model as shown in Section 4.4.1

• Open the File menu and load the properties contained in file
examples/battery sensor/system discrete.propxml

• Click on the Safety tab and select the Fault Tree Generation pane

• Select the property TLE: Not is alive on the left

• Expand the Model Checker Options pane and check Compute Probabilities

• The bottom pane becomes editable; assign the following probabilities (see Figure 5.9):

– sys.psu1.generator. errorSubcomponent. fault: 0.2

November 7, 2018 COMPASS Toolset Tutorial 35

!sys.is_alive

fault_cfg_3 fault_cfg_2 fault_cfg_1

sys.sensor1._errorSubcomponent.__f
ault

E3

P = 0.0

sys.sensor2._errorSubcomponent.__f
ault

E4

P = 0.0

sys.psu1.generator._errorSubcompon
ent.__fault

E1

P = 0.0

sys.psu2.generator._errorSubcompon
ent.__fault

E2

P = 0.0

Figure 5.8: Fault Tree Generation for system discrete example.

– sys.psu2.generator. errorSubcomponent. fault: 0.2

– sys.sensor1. errorSubcomponent. fault: 0.3

– sys.sensor2. errorSubcomponent. fault: 0.3

• Click the Generate Fault Tree button

• A fault tree such as the one in Figure 5.10 is created; it is the same fault tree as the one
shown in Figure 5.8 in which probabilities are attached to each node

We can see that, under the hypotheses we have done on basic faults, the probability of the
system not being alive is estimated as 0.418.

5.9 Fault Tree Evaluation

Aside from assigning static failure rates to basic events, COMPASS also allows the error rates
used in error models – as described in Section 5.2 – to be used to calculate error probabilities
in fault trees. This can be used to determine the overall probability of a fault tree’s top level
event occurring, or an arbitrary (Boolean) combination of any of the fault tree’s nodes.

To see how the probability of the top level event can be calculated, take the following steps.

Steps

• Generate the fault tree as described in Section 5.8

November 7, 2018 COMPASS Toolset Tutorial 36

Figure 5.9: Fault Tree Generation pane with probabilities enabled.

Figure 5.10: Probabilistic Fault Tree Generation for system discrete example.

• Select the (Dynamic) Fault Tree Evaluation pane

• In the Properties pane on the left, ensure the property TLE: Not is alive is selected

• Set the mission end time to some positive number, for example 1

• Set the severity to some positive number, for example 5

November 7, 2018 COMPASS Toolset Tutorial 37

• Click the Start Fault Tree Evaluation button

• A fault tree such as the one in Figure 5.11 is created. It shows what the probabilities of
the various events are, and their associated severity.

!sys.is_alive

P = 9.731480e-02 NuSMV-SA criticality: 9.73…

fault_cfg_3

P = 2.226700e-03 NuSMV-SA criticality: 2.22…

fault_cfg_2

P = 4.754400e-02 NuSMV-SA criticality: 4.75…

fault_cfg_1

P = 4.754400e-02 NuSMV-SA criticality: 4.75…

sys.sensor1._errorSubcomponent.__f
ault

E3

P = 4.877060E-02

sys.sensor2._errorSubcomponent.__f
ault

E4

P = 4.877060E-02

sys.psu1.generator._errorSubcompon
ent.__fault

E1

P = 4.877060E-02

sys.psu2.generator._errorSubcompon
ent.__fault

E2

P = 4.877060E-02

Figure 5.11: Fault Tree Evaluation for system discrete example.

5.10 Fault Tree Verification

In addition to the evaluation of the fault tree, verification can be used to analyze some property
over the nodes of the fault tree, determining the probability of some – optionally ordered –
combination of nodes.

To see how such a verification of a fault tree can be performed, we take the following steps.

Steps

• Generate the fault tree as described in Section 5.8

• Select the (Dynamic) Fault Tree Verification pane

• In the Properties pane on the left, ensure the property TLE: Not is alive is selected

• Choose the CSL probabilisticExistence pattern from the drop down list.

• In the proposition placeholder, enter Top Level Event

• In the timebound placeholders, enter 0 and 5 respectively

November 7, 2018 COMPASS Toolset Tutorial 38

• Click the Run button

• A graph is shown showing the probability of Top Level Event eventually occurring within
the time interval as specified by the placeholders.

Example output is shown in Figure 5.12.

Figure 5.12: Fault Tree Verification for system discrete example.

5.11 Failure Mode and Effects Analysis

Another traditional safety assessment technique is Failure Mode and Effects Analysis (FMEA).
FMEA is a bottom-up technique that, given a set of basic faults, evaluate their consequences
on a set of properties (one or more). Specifically, a table (called FMEA table) is constructed,
that contains one entry for each property that is being invalidated by a given set of faults.
Traditionally, FMEA tables are generated for individual faults (FMEA table with cardinality
one), however in COMPASS it is possible to generate FMEA tables for higher cardinality.

Let us see an example with the system discrete model. We execute the following steps.

Steps

• Load the model as shown in Section 4.4.1

November 7, 2018 COMPASS Toolset Tutorial 39

• Open the File menu and load the properties contained in file
examples/battery sensor/system discrete.propxml

• Click on the Safety tab and select the Fault Tree Generation pane

• Select the property TLE: Not is alive on the left

• Set the value of Cardinality to 3

• Click the Generate FMEA Table button, which fills the table below with the results of
the computation. As shown in Figure 5.13, FMEA proved that possible causes of the
event “not sys.is alive” are:

1. two combinations of cardinality one (sys.psu1.generator. errorSubcomponent. fault

and sys.psu2.generator. errorSubcomponent. fault)

2. six combinations of cardinality two (rows having ID from 5-1 ID 10-1)

3. four combinations of cardinality three (rows having ID from 11-1 to 14-1)

Figure 5.13: FMEA with cardinality 3 for system discrete example.

More details on the different options of FMEA (Dynamic FMEA and Compact FMEA)
can be found in Section 9.6.4 of the user manual.

5.12 Modeling Fault Propagation: TFPGs

The COMPASS toolset allows to perform many analyses using Times Failure Propagation
Graphs (TFPG). TFPGs are a powerful formalism to model and analyze failure propagation

November 7, 2018 COMPASS Toolset Tutorial 40

behavior in a model. In other words, a TFPG is an abstract view of a system model that
represent only the failure propagation information: basic faults and their effects (called dis-
crepancies). Faults and effects are represented as nodes in a graph – an edge connecting
different node indicates a failure propagation. Moreover, an edge may be labeled with timing
and mode information (time needed for the propagation to take place, and system modes that
enable the propagation). TFPGs can be used for diagnostic or prognostic purposes.

More in detail, a TFPG is a labeled directed graph where nodes represent either failure
modes, which are fault causes, or discrepancies, which are off-nominal conditions that are
effects of failure modes. There are two types of discrepancies: AND discrepancies and OR
discrepancies. Edges between nodes in the graph capture the effect of failure propagation over
time in the underlying dynamic system and they propagate in a time interval [tmin, tmax]. Edges
in the graph model can be activated or deactivated depending on a set of possible operational
modes of the system (activation modes); this allows to represent failure propagation in multi-
mode (switching) systems.

We notice that discrepancies may be either monitored or non-monitored (observable or not
observable)1.

It is possible to relate a TFPG with a given system model, in order to analyze whether the
TFPG is indeed an abstraction of the model (i.e., it contains at least as many behaviors as the
system model). Moreover, it is possible to automatically synthesize a TFPG, given a system
model, a set of faults and the specification of the discrepancies (in terms of the system model).
For running these analyses, we need to specify some TFPG SLIM associations, which define
TFPG elements (failure modes and discrepancies) in terms of SLIM propositional expressions
(predicating on the system model). In particular, it is possible to:

1. Associate failure modes in the TFPG to errors that are currently injected in the SLIM
model

2. Associate discrepancies in the TFPG to SLIM expressions

3. Associate TFPG modes to SLIM expressions

We refer to section 9.3 of the user-manual for a more exhaustive explanation about TFPGs
and TFPG analyses.

5.12.1 Editing TFPGs

We now show how a TFPG can be edited. We first show how it can be edited from scratch.
As an example, we assume we want to build a TFPG for the battery sensor example, with

the following failure modes:

• Gen1_off

• Gen2_off

• Sens1_off

• Sens2_off

1We will discuss this aspect later in Section 7 when we introduce observability and FDIR analyses.

November 7, 2018 COMPASS Toolset Tutorial 41

the following discrepancies:

• System_Dead

• G1_DEAD

• B1_LOW

• B1_DEAD

• S1_WO

• G2_DEAD

• B2_LOW

• B2_DEAD

• S2_WO

and the following system modes:

• Primary

• Secondary1

• Secondary2

Moreover, we assume that propagations take the following propagation times and can take
place in the following system modes:

• from Gen1_off to G1_DEAD with propagation time [0.0, 0.0]
in modes: Primary,Secondary1,Secondary2

• from G1_DEAD to B1_LOW with propagation time [0.0, 3.0]
in modes: Primary,Secondary1

• from B1_LOW to B1_DEAD with propagation time [1.0, 2.0]
in modes: Primary,Secondary1

• from B1_DEAD to S1_WO with propagation time [0.0, 1.0]
in modes: Primary,Secondary1

• from S1_WO to System_Dead with propagation time [0.0, 0.0]
in modes: Primary,Secondary1,Secondary2

• from Gen2_off to G2_DEAD with propagation time [0.0, 0.0]
in modes: Primary,Secondary1,Secondary2

• from G2_DEAD to B2_LOW with propagation time [0.0, 3.0]
in modes: Primary,Secondary2

November 7, 2018 COMPASS Toolset Tutorial 42

• from B2_LOW to B2_DEAD with propagation time [1.0, 2.0]
in modes: Primary,Secondary2

• from B2_DEAD to S2_WO with propagation time [0.0, 1.0]
in modes: Primary,Secondary2

• from S2_WO to System_Dead with propagation time [0.0, 0.0]
in modes: Primary,Secondary1,Secondary2

• from B1_DEAD to S2_WO with propagation time [0.0, 1.0]
in modes: Secondary1

• from B2_DEAD to S1_WO with propagation time [0.0, 1.0]
in modes: Secondary2

• from Sens1_off to S1_WO with propagation time [0.0, 1.0]
in modes: Primary,Secondary1,Secondary2

• from Sens2_off to S2_WO with propagation time [0.0, 1.0]
in modes: Primary,Secondary1,Secondary2

The idea is that, as in the battery sensor system presented so far, in the normal operating
mode (Primary) each sensor is powered by its own battery; however, two other configurations
are possible: Secondary1 and Secondary2. These configurations are named according to the
number of the battery actually providing the energy for the sensors. Two types of failure
are possible: Generator and Sensor. If the generator fails, the battery starts discharging at
a constant rate given by the number of sensors that are connected to it. When the battery
becomes exhausted, the sensors attached to it stop working. Discrepancies S1_WO and S2_WO

model the fact that the respective sensor has stopped working.
Discrepancies can be monitored or not. In this example, we decided to monitor only these

discrepancies: B1 LOW, B2 LOW (representing a low charge of the corresponding battery)
and System Dead (representing a system failure, i.e., the system being not alive). The choice
of which discrepancies are to be monitored might depend (in practice) on the availability
of suitable sensors. The non-determinism on the propagation time of the failure is mainly
given by the fact that we do not know the charge level of the battery until we get to the
critical level (BX LOW). Additionally, we allow for a small non-determinism before activating
the discrepancy indicating a wrong reading (SX WO). Note that there is uncertainty on the
propagation time between BX LOW and BX DEAD. This is motivated by the fact that the
depletion of the battery will take more time if we are in the Primary mode rather than in the
Secondary mode.

We can create the TFPG in the following way.

Steps

• Load the model as shown in Section 4.4.1

• Click on the TFPG tab

• In the bottom-left part of the window, click the New button

November 7, 2018 COMPASS Toolset Tutorial 43

• Choose a name for the file to be created (e.g example tfpg.tfpg)

• Click the Open button and then OK ; a text editor pops-up

• Insert the data as shown in Figure 5.14

• Save and close the text editor

• The graphical representation of the TFPG is shown in the toolset (see Figure 5.15); on
the left side it is possible to see the TFPG named Example-TFPG

NAME Example-TFPG

INFINITY_SEMANTICS_CLOSED

FM Gen1_off

FM Gen2_off

FM Sens1_off

FM Sens2_off

AND System_Dead MONITORED

OR G1_DEAD

OR B1_LOW MONITORED

OR B1_DEAD

OR S1_WO

OR G2_DEAD

OR B2_LOW MONITORED

OR B2_DEAD

OR S2_WO

MODES Primary,Secondary1,Secondary2

EDGE EDGE1 Gen1_off G1_DEAD 0.0 0.0 (Primary,Secondary1,Secondary2)

EDGE EDGE2 G1_DEAD B1_LOW 0.0 3.0 (Primary,Secondary1)

EDGE EDGE3 B1_LOW B1_DEAD 1.0 2.0 (Primary,Secondary1)

EDGE EDGE4 B1_DEAD S1_WO 0.0 1.0 (Primary,Secondary1)

EDGE EDGE5 S1_WO System_Dead 0.0 0.0 (Primary,Secondary1,Secondary2)

EDGE EDGE6 Gen2_off G2_DEAD 0.0 0.0 (Primary,Secondary1,Secondary2)

EDGE EDGE7 G2_DEAD B2_LOW 0.0 3.0 (Primary,Secondary2)

EDGE EDGE8 B2_LOW B2_DEAD 1.0 2.0 (Primary,Secondary2)

EDGE EDGE9 B2_DEAD S2_WO 0.0 1.0 (Primary,Secondary2)

EDGE EDGE10 S2_WO System_Dead 0.0 0.0 (Primary,Secondary1,Secondary2)

EDGE EDGE11 B1_DEAD S2_WO 0.0 1.0 (Secondary1)

EDGE EDGE12 B2_DEAD S1_WO 0.0 1.0 (Secondary2)

EDGE EDGE13 Sens1_off S1_WO 0.0 1.0 (Primary,Secondary1,Secondary2)

EDGE EDGE14 Sens2_off S2_WO 0.0 1.0 (Primary,Secondary1,Secondary2)

Figure 5.14: Example of TFPG written in textual format.

November 7, 2018 COMPASS Toolset Tutorial 44

Figure 5.15: Example of a TFPG for the system discrete example.

5.12.2 Loading and Saving TFPGs

In addition to creating a new TFPG as shown in the previous section, it is possible to load
and modify an existing TFPG, and to save a TFPG. For instance, we can load the xml
representation of the previous TFPG as follows.

Steps

• Load the model as shown in Section 4.4.1

• Click on the TFPG tab

• Click on the File menu, choose the item Load TFPG... and select the TFPG
examples/battery sensor/system.txml; a graphical representation of the TFPG is
shown in the Viewer tab (see Figure 5.15)

Now, we can edit the loaded TFPG or save it with a different name as follows.

Steps

• Load the TFPG as shown previously

• Click the File menu

• Select the item Save TFPG As...

• Insert copy_of_system_discrete.txml as name and save it to Desktop

• Click the Save button; a file named copy_of_system_discrete.txml has been created
in the Desktop

November 7, 2018 COMPASS Toolset Tutorial 45

• In the GUI, select the TFPG Sensor-Generator and click the Edit button; an external
editor opens

• Change the name of the TFPG (modify the first line from “NAME Sensor-Generator”
to “NAME Sensor-Generator-Old”)

• Delete the last line
“EDGE EDGE14 Sens2 off S2 WO 0.0 1.0 (Primary,Secondary1,Secondary2)”

• Save and close the external editor; the updated TFPG (i.e., an edge is now missing) is
shown in the Viewer pane

• Click the File menu

• Select the item Load TFPG... and select the file copy_of_system_discrete.txml pre-
viously saved to the Desktop; the unmodified version of the TFPG is shown in the
Viewer tab. In particular (see Figure 5.16), on the left side the two TFPGs appear
(Sensor-Generator-Old and Sensor-Generator)

Figure 5.16: Two different loaded TFPGs for the system discrete example.

5.12.3 Editing TFPG Associations

TFPG associations provide the link between a TFPG and a system model. They are used to
run TFPG analyses, such as behavioral validation and synthesis - that are illustrated later on
in this section.

TFPG associations may be edited using the COMPASS toolset as follows.

Steps

• Load the model as shown in Section 4.4.1

November 7, 2018 COMPASS Toolset Tutorial 46

• Click on the TFPG tab

• Click on the File menu, select the item Load TFPG... and select the TFPG
examples/battery sensor/system.txml; a graphical representation of the TFPG is
shown in the Viewer tab

• Click on the Slim Associations tab; the names of the different TFPG elements are divided
depending on their category (Failure Modes, Monitored Discrepancies, Non-monitored
Discrepancies and TFPG Modes); now it is possible to associate some SLIM expressions

• In the row of the failure mode Gen1 off, select the following expression from the drop-
down menu: sys.psu1.generator.error = error:dead. In this way, we associate to
the failure mode Gen1 off the expression corresponding to the generator being in dead

state. An OK in the Result columns confirms that the expression we have inserted is
correct.

• In the row of the monitored discrepancy System Dead, type the following expression:
not sys.is-alive. An error message is shown and in the Result column the value
ERROR appears. Correct the expression to not sys.is alive and the result OK is shown
(see Figure 5.17).

Figure 5.17: Adding TFPG SLIM associations for the system discrete example.

5.12.4 Loading and Saving TFPG Associations

Similarly to TFPGs, TFPG associations may be loaded and saved. In order to load associations
for the system discrete example, we can use the following steps.

Steps

• Load the model as shown in Section 4.4.1

November 7, 2018 COMPASS Toolset Tutorial 47

• Click on the TFPG tab

• Click on the File menu, select the item Load TFPG... and select the TFPG
examples/battery sensor/system.txml; a graphical representation of the TFPG is
shown in the Viewer tab

• Click on the Slim Associations tab

• Click the Load button in the bottom part and select the file
examples/battery sensor/system.axml; the pane is filled with the SLIM associations
as shown in Figure 5.18

Figure 5.18: TFPG SLIM associations for the system discrete example.

The Save button located in the bottom part of the GUI, allows to save the associations in
the same way as shown for TFPGs.

5.12.5 TFPG Behavioral Validation

Behavioral validation has the purpose of checking whether a TFPG is a complete abstraction
of a system model, that is, that all behaviors of the system model are indeed specified in the
TFPG. Behavioral Validation for the system discrete example can be carried out through
the following steps.

Steps

• Load the model as shown in Section 4.4.1

November 7, 2018 COMPASS Toolset Tutorial 48

• Click on the TFPG tab

• Click on the File menu, select the item Load TFPG... and select the TFPG
examples/battery sensor/system.txml; a graphical representation of the TFPG is
shown in the Viewer tab

• Click on the Slim Associations tab

• Click the Load button in the bottom part and select the file
examples/battery sensor/system.axml; the pane is filled with the SLIM associations.

• Click on the Tfpg Behavioral Validation tab

• Click the Run Behavioral Validation button

• A message confirms that the TFPG is complete with respect to the model (see Fig-
ure 5.19)

Figure 5.19: TFPG Behavioral Validation for the system discrete example.

In case the TFPG is not complete with respect to the system model, a message appears
along with the counterexample, which consists of a pair of traces: a system trace and the
corresponding view of the system trace for the TFPG.

As an example, let us edit the TFPG definition as follows.

Steps

• Load the model as shown in Section 4.4.1

• Click on the TFPG tab

November 7, 2018 COMPASS Toolset Tutorial 49

• Click on the File menu, select the item Load TFPG... and select the TFPG
examples/battery sensor/system.txml; a graphical representation of the TFPG is
shown in the Viewer tab

• Click the Edit button; an external editor opens.

• Replace the destination node (S1 WO) of the edge connecting Sens1 Off with S2 WO;
close and save the external editor. The modified graphical representation of the TFPG
is shown.

• Click on the Slim Associations tab

• Click the Load button in the bottom part and select the file
examples/battery sensor/system.axml; the pane is filled with the SLIM associations.

• Click on the Behavioral Validation tab

• Click the Run Behavioral Validation button

• The TFPG is indeed incomplete with respect to the system model (see Figure 5.20) and
the reason, as expected, is that the node S1 WO can now be activated without the failure
of the sensor sensor1.

Figure 5.20: TFPG Behavioral Validation for the system discrete example (incomplete re-
sult).

November 7, 2018 COMPASS Toolset Tutorial 50

5.12.6 TFPG Synthesis

Using TFPG synthesis, it is possible to automatically synthesize a complete TFPG starting
from a system model and a set of TFPG associations.

As ax example, let us assume that we want to automatically synthesize a TFPG, given the
system discrete example, and the same TFPG associations shown in Section 5.12.3.

We execute the following steps.

Steps

• Load the model as shown in Section 4.4.1

• Click on the TFPG tab

• Click on the Synthesis tab

• Click the Load button in the bottom part and select the file
examples/battery sensor/system.axml; the pane is filled with the SLIM associations.

• Click the Run Synthesis button

• A message confirms that the analysis is completed, and a TFPG named DependencyGraph

is shown on the left side (see Figure 5.21); clicking on it will load the graphical repre-
sentation in the Viewer tab

Figure 5.21: TFPG Synthesis for the system discrete example.

We remark that currently, only the TFPG graph is synthesized. The edge timings are set
to [0,+∞] and the edges labeled with all the modes, which guarantees TFPG completeness.
The TFPG timings and modes can then be manually edited, if needed.

Chapter 6

Probabilistic Verification

Aside from qualitative or timed model checking as described in Chapter 4, COMPASS also
provides the capability for quantitative model checking, in the form of probabilistic verification.
If the model contains error events with an associated error rate (see Section 5.2), the probability
of certains events in the model can be determined by means of performability analysis.

6.1 Making the Model Reactive

An important aspect of probabilistic verification is that it requires the model to be reactive.
This means that a component containing states must at some point wait for input or a change
in the error model. Otherwise, the result of probabilistic verification may not be as expected:
Transitions in the nominal model always have precedence over (probabilistic) transitions in
the error model. To this end, we modify the discrete battery sensor model itself, such that
state changes occur only if there is a change in the environment of the battery.

The changed components of the model are shown in Figure 6.1. The loops that update the
status of the ports of the batteries have been replaced by a special type of connection called
flow : These allow an expression composed of input ports and constant values to be connected
to a single output port. For example, the connection in Sensor.Imp sets the value of reading
to the negation of has_power, indicating a reading is available as long as there is power.

The inputs for the mode switching in the System component have been marked blocking.
By default, SLIM will input-enable these ports, making it possible for the system to always
accept these events even if the mode is already switched. By marking the ports as blocking,
these inputs are accepted only in the primary mode.

6.2 Probabilistic Properties

We will now add some property for performability analysis

• Click on the Properties tab

• Click on the item Enclosure.Imp

• Click on the Properties sub-tab

• Click Add in the Patterns sub-pane

51

November 7, 2018 COMPASS Toolset Tutorial 52

system System

features

is_alive: out data port bool {Observable => true;};

mode_selector: out data port enum(Primary, Secondary1, Secondary2)

{Default => "Primary"; Observable => true;};

go_to_secondary1: in event port {Blocking => true;};

go_to_secondary2: in event port {Blocking => true;};

end System;

system implementation Battery.Imp

connections

flow true -> has_power_out in modes(full, low_single, low_double);

flow false -> has_power_out in modes(empty);

flow true -> low in modes(low_single, low_double);

flow false -> low in modes(full, empty);

states

full: initial state;

low_single: state;

low_double: state;

empty: state;

transitions

full -[when not has_power_in and

not double_consumption and

not zero_consumption]-> low_single;

full -[when not has_power_in and

double_consumption and

not zero_consumption]-> low_double;

low_single -[when not zero_consumption]-> empty;

low_double -[when not zero_consumption]-> empty;

end Battery.Imp;

system implementation Sensor.Imp

connections

flow has_power -> reading;

states

base: initial state;

properties

ErrorModel => classifier(PermanentFailure.Imp);

FaultEffects => ([State=>"dead"; Target=>reference(reading);

Effect=>"false";]);

end Sensor.Imp;

Figure 6.1: Battery Sensor model: basic components’ implementation.

• Set the values as shown in Figure 6.2

November 7, 2018 COMPASS Toolset Tutorial 53

Figure 6.2: A probabilistic property.

By having performed these steps, the eventually not System is alive property is now
a time-bounded probabilistic property, which may be used for performability analysis.

6.3 Performability Analysis

Actual performability analysis can be be performed using the Analysis sub-tab of the Per-
formability tab. We will do so by taking the following steps

• Perform the steps of Section 6.2

• Click on the Performability tab

• Click on the IMC Analysis sub-tab

• In the left pane, check the eventually not System is alive property

• On the right, set the Error Bound field to 0.0001

• Click Run

After some delay, a graph will be plotted that shows the (cumulative) probability distri-
bution of the property holding true after a given delay, as shown in Figure 6.2.

6.4 Performability Simulation

Performability simulation can be performed using the Simulation sub-tab of the Performability
tab. We will do so by taking the following steps

• Perform the steps of Section 6.2

November 7, 2018 COMPASS Toolset Tutorial 54

Figure 6.3: Performing performability analysis.

• Click on the Performability tab

• Click on the Model Simulation sub-tab

• In the left pane, check the eventually not System is alive property

• The simulation parameters can be left at their default values

• Click Run

After some delay, the overall probability estimated of the property holding true after within
its specified time bound is given, as shown in Figure 6.4.

For more details about the differences between performability analysis and simulation, see
Section 9.3

November 7, 2018 COMPASS Toolset Tutorial 55

Figure 6.4: Performing performability simulation.

Chapter 7

Fault Detection, Identification and
Recovery

In this chapter, we discuss Fault Detection, Identification and Recovery (FDIR for short): we
introduce the notions of observability and alarms, and we illustrate how to build an FDIR
sub-system and verify its effectiveness in terms of detection, isolation and recovery capabilities.
We also discuss diagnosability and the use of TFPGs for FDIR.

7.1 Modeling Observables

Observables indicate signals that are visible to an (FDIR) component. In SLIM, data ports
may be tagged with the attribute observable for this purpose. Typically, observables can be
used to model information that is provided by sensors.

We extend the battery sensor model with delays, by adding some observability information
(see model system fdir.slim). In particular, we tag the low output port of each battery as
observable, with the idea of using this signal to detect a fault of the battery. Additionally, we
also want to export these signals at system level, so that they can be accessible to the FDIR
controller we want to model. We do this as shown in Figure 7.1. In order to model the routing
to the system level, we add an output data port low to the PSU interface, and two output
data ports battery1_low and battery2_low to the system interface, all of them tagged as
observables. The connections are drawn in the corresponding component implementations.

7.2 Modeling a Controller

We can now use the observables defined in Section 7.1, in order to detect a fault of either
of the two batteries. Eventually, when we detect such a fault, we want to re-configure the
system, so that it is able to tolerate it. In particular, we can re-configure the system using
the secondary1 and secondary2 system modes.

We model the controller (the FDIR component) as a component running in parallel,
synchronously, with the system model, and connected with the system by means of the
observables (the battery1_low and battery2_low signals) and by means of event ports
(go_to_secondary1 and go_to_secondary2) that can be triggered to issue the re-configuration.
Notice, that as a difference with the models in Chapter 4, where these event ports were left

56

November 7, 2018 COMPASS Toolset Tutorial 57

system Battery

features

[...]

low: out data port bool {Default => "false"; Observable => true;};

end Battery;

system PSU

features

[...]

low : out data port bool {Default => "false"; Observable => true;};

end PSU;

system System

features

[...]

battery1_low: out data port bool {Default => "false";

Observable => true;};

battery2_low: out data port bool {Default => "false";

Observable => true;};

end System;

system implementation PSU.Imp

connections

[...]

port battery.low -> low;

end PSU.Imp;

system implementation System.Imp

connections

[...]

port psu1.low -> battery1_low;

port psu2.low -> battery2_low;

[...]

end System.Imp;

Figure 7.1: Adding observability information and connections.

free, here we want to connect them to the FDIR controller.
We specify the controller as follows – see Figure 7.2. The controller is modeled by the

monitor component. Its interface contains the observable input data ports, and the event
ports to control the system. Notice the event ports are output ports (whereas they are input
ports for the system), since they are triggered by the controller itself. The monitor implemen-
tation models a simple, time-triggered, controller that checks the status of the batteries each
time unit. In case either battery has a low charge, it issues a proper re-configuration (e.g.,
go_to_secondary2 is triggered when battery1_low is true, and moves from the base state
to the recovery state). The AADL property FDIR =>true additionally tags the component

November 7, 2018 COMPASS Toolset Tutorial 58

system Monitor

features

battery1_low : in data port bool {Default => "false";};

battery2_low : in data port bool {Default => "false";};

go_to_secondary1: out event port;

go_to_secondary2: out event port;

properties

FDIR => true;

end Monitor;

system implementation Monitor.Imp

subcomponents

delay: data clock;

states

base: initial state while (delay <= 1);

recovery: state while (delay <=1);

transitions

base -[when delay >= 1 and not battery1_low and not battery2_low

then delay := 0] -> base;

base -[go_to_secondary2 when delay >= 1 and battery1_low

then delay := 0]-> recovery;

base -[go_to_secondary1 when delay >= 1 and battery2_low

then delay := 0]-> recovery;

recovery -[when delay >= 1 then delay := 0]-> recovery;

properties

FDIR => true;

end Monitor.Imp;

system System

features

[...]

go_to_secondary1: in event port;

go_to_secondary2: in event port;

end System;

system Enclosure

end Enclosure;

system implementation Enclosure.Imp

subcomponents

sys: system System.Imp;

mon: system Monitor.Imp;

connections

port sys.battery1_low -> mon.battery1_low;

port sys.battery2_low -> mon.battery2_low;

port mon.go_to_secondary1 -> sys.go_to_secondary1;

port mon.go_to_secondary2 -> sys.go_to_secondary2;

end Enclosure.Imp;

Figure 7.2: Adding an FDIR controller.

November 7, 2018 COMPASS Toolset Tutorial 59

as being an FDIR one.
In addition to modeling the controller, we modify, as it can also be seen from Fig-

ure 7.2, the System and the Enclosure components so that the go_to_secondary1 and
go_to_secondary2 signals are declared as input ports of the system and routed from the
controller to the system, instead of being connected to the external environment – this is
visible in the implementation of the Enclosure component.

7.3 Safety Analysis Revisited

We show that, introducing the controller, has a beneficial effect on the safety assessment of
the model. In particular, we run again Fault Tree Analysis (compare Section 5.8) on the new
model.

Steps

• Load the model system fdir.slim in the GUI

• Open the File menu and load the properties contained in file
examples/battery sensor/system fdir.propxml

• Click on the Safety tab and select the Fault Tree Generation pane

• Only the property TLE: Not is alive appears on the left; this is why it is the only
propositional property

• Select the property

• Expand the Model Checker Options pane and check Compute Probabilities

• The bottom pane becomes editable; assign the following probabilities

– sys.psu1.generator. errorSubcomponent. fault: 0.2

– sys.psu2.generator. errorSubcomponent. fault: 0.2

– sys.sensor1. errorSubcomponent. fault: 0.3

– sys.sensor2. errorSubcomponent. fault: 0.3

• Click the Generate Fault Tree button

• A fault tree such as the one in Figure 7.3 is created;

As we can see from Figure 7.3, the single points of failure (failure of either of the two
generators) have disappeared from the model. The rationale is that the re-configuration of
the system has made the system more robust, in particular now it is resistant to a single
fault of a generator. Probabilistically, the probability of the system not being alive is reduced
from 0.418 (i.e, probability of the continuous model with no controller – it is identical to the
probability for the discrete model) to 0.126.

Notice that the monitor checks the status of the batteries each time unit. If we increase
the time bounds to 2 time units, the monitor will be unable to detect the battery failure in

November 7, 2018 COMPASS Toolset Tutorial 60

Figure 7.3: Probabilistic Fault Tree Generation for system fdir example.

time to make the re-configuration, since in the low_single state the battery will discharge
completely in 2 time units. The user can verify that, in this situation, the fault tree contains
additional minimal cut sets.

7.4 Modeling Alarms

An FDIR component may be associated with alarms. An alarm is typically associated with
the detection of an anomaly, e.g. detection of a unexpected system behavior. Any Boolean
outgoing data-port of an FDIR component may be tagged as being an alarm. Typically, an
alarm may be designed so that it is triggered by a specific fault, or by a set or combinations of
faults. When an alarm is triggered by a specific fault, we speak about perfect fault isolation.

As an example, we want add alarms to the monitor component, that are raised when a
battery has a low charge. Each battery has its own associated alarm. We do this as shown in
Figure 7.4.

In general, the purpose of alarms is to raise awareness of a system anomaly, so that appro-
priate countermeasures (e.g., re-configuration to recover from a fault) can be taken. In our
simple battery sensor example, raising of the alarms and system re-configuration are carried
out by the same component (monitor). More in general, these two actions may be carried out
by separate (communicating) components, that is, a fault detection (FD) component is respon-
sible to perform fault detection and raise the alarms, and a fault recovery (FR) component
reads the alarms and reacts by triggering the appropriate recovery actions.

November 7, 2018 COMPASS Toolset Tutorial 61

system Monitor

features

[...]

alarm_battery1: out data port bool {Default => "false";

Alarm => true;};

alarm_battery2: out data port bool {Default => "false";

Alarm => true;};

[...]

end Monitor;

system implementation Monitor.Imp

[...]

transitions

base -[when delay >= 1 and not battery1_low and not battery2_low

then delay := 0] -> base;

base -[go_to_secondary2 when delay >= 1 and battery1_low

then delay := 0; alarm_battery1 := true]-> recovery;

base -[go_to_secondary1 when delay >= 1 and battery2_low

then delay := 0; alarm_battery2 := true]-> recovery;

recovery -[when delay >= 1 then delay := 0]-> recovery;

[...]

end Monitor.Imp;

Figure 7.4: Adding alarms.

7.5 FDIR Effectiveness Analysis

The purpose of FDIR effectiveness analysis is to assess the effectiveness of an existing FDIR
component. For instance, we may assess its capability to detect a specific fault or anomaly
(effectiveness of detection/identification), or its effectiveness to recover from it (effectiveness
of recovery).

One way to assess such effectiveness is to model check the system with respect to a suitable
set of properties.

For instance, let us check the following property: B1_LOW ->ALARM_B1 (charge level low of
battery1 eventually followed by alarm of battery1). This property formalizes the notion of
completeness of the detection (condition implies that eventually the alarm will be raised).

Steps

• Load the model system fdir.slim in the GUI

• Open the File menu and load the properties contained in file
examples/battery sensor/system fdir.propxml

• Click on the Correctness tab and select the Model Checking pane

• The following properties are shown on the left Properties pane:

November 7, 2018 COMPASS Toolset Tutorial 62

– TLE: Not is alive

– B1 LOW

– B2 LOW

– B1 or B2 LOW

– always System is alive

– never PSUA Low

– never PSUA empty

– never Not is alive

– never Secondary1

– always Generator.has power

– never Low double

– B1 LOW -> ALARM B1

– always ALARM B1 implies B1 LOW

– ALARM B1 -> SECONDARY2

– Battery low responded by reconf

• Select the property B1 LOW -> ALARM B1.

• Enable the Model Extended by Fault Injections checkbox; other properties appear in
the left hand side list

• Expand the element Model Checker Options; klive is selected as engine

• Set the values for IC3 Bound and klive Bound to 20

• Click the Run Model Checking button

• The property results to be false (see Figure 7.5)

It may seem unexpected, but the property is false. In fact, battery1 may happen to
discharge after the system has already been re-configured to mode secondary1 (due to low
charge of battery2), hence in this case the alarm for battery2 will be raised, instead of that
for battery1. We leave it as an exercise for the reader to try and weaken this property, in
order to obtain one that is verified by the system (e.g., trying to detect the disjunction of two
faults, or assuming the hypothesis of single fault).

We remark that the choice of a proper (sufficiently high) SAT bound may be important
– e.g., using a SAT bound equal to 10 is not enough to falsify the property in the former
example, as the user can check. The bound depends on the number of transitions in the
model that are necessary to reach the desired counterexample. See also Chapter 9 for hints
on dealing with the SAT bound.

Property always ALARM_B1 implies B1_LOW, is instead true. This is a property stating
the correctness of detection (raising of the alarm implies condition). Here, we are exploiting
the fact that the signal B1_LOW is never reset – in a more general case, one should state that
raising of the alarm implies that the condition was true sometime in the past. The property
can be verified as follows.

November 7, 2018 COMPASS Toolset Tutorial 63

Figure 7.5: Counterexample trace created for the property B1 LOW -> ALARM B1 of the
system fdir example (extended version).

Steps

• Load the model system fdir.slim in the GUI

• Open the File menu and load the properties contained in file
examples/battery sensor/system fdir.propxml

• Click on the Correctness tab and select the Model Checking pane

• Select the property always ALARM B1 implies B1 LOW.

• Enable the Model Extended by Fault Injections checkbox; other properties appear in
the left hand side list

• Expand the element Model Checker Options; klive is selected as engine

• Set the values for IC3 Bound and klive Bound to 20

• Click the Run Model Checking button

• The property results to be true

Note that in this case, the answer of the model checker is conclusive (“The property is
true” and not “The property is true up to bound . . . ”).

Property ALARM_B1 ->SECONDARY2 (raising of the alarm for battery1 is eventually fol-
lowed by a re-configuration to mode secondary2) is also true.

COMPASS provides additional, specific tasks to carry out FDIR effectiveness analysis,
called Fault Detection Analysis, Fault Isolation Analysis and Fault Recovery Analysis. They
are illustrated below.

November 7, 2018 COMPASS Toolset Tutorial 64

7.5.1 Fault Detection Analysis

Fault detection analysis has the purpose to analyze whether a given condition (e..g, a fault
or anomaly) can indeed be detected using any of the system alarms. Fault detection analysis
takes as input the condition, and returns as output the detection means, that is, the set of
alarms that are necessarily (and eventually) raised when the condition is true.

For instance, we could analyze fault detection for the two properties B1_LOW and B2_LOW

that specify the fact that the charge level of the two batteries is low. However, we already
know (from the results we obtained using model checking at the beginning of Section 7.5) that
it is not possible to detect such conditions. Then, we can try and add a further alarm to the
model, namely one that detects the failure of either battery. We do it as in Figure 7.6.

system Monitor

features

[...]

alarm_battery: out data port bool {Default => "false";

Alarm => true;};

[...]

end Monitor;

system implementation Monitor.Imp

[...]

connections

flow true -> alarm_battery in modes (recovery);

[...]

end Monitor.Imp;

Figure 7.6: Adding alarms.

We now run fault detection for the property B1_LOW. We do it as follows.

Steps

• Load the model system fdir.slim in the GUI

• Open the File menu and load the properties contained in file
examples/battery sensor/system fdir.propxml

• Click on the FDIR tab and select the Fault Detection Analysis pane

• Select the property B1 LOW on the left

• Set the value for the SAT bound to 30

• Click the Run Fault Detection button

• The Alarm pane is filled with the following list: mon.alarm battery (see Figure 7.7)

November 7, 2018 COMPASS Toolset Tutorial 65

Figure 7.7: Fault Detection Analysis using property B1 LOW of the system fdir example.

Again, the choice of a proper (sufficiently high) SAT bound is important – e.g., using a
lower SAT bound may produce inaccurate results (spurious alarms may be returned as possible
detection means). In this case, the bound depends on the number of transitions in the model
that are necessary to rule out the wrong detection means and on the underlying model checking
algorithm.

7.5.2 Fault Isolation Analysis

Fault isolation analysis has the purpose to analyze the conditions under which the alarms may
be triggered. Namely, it takes as input the set of the alarms defined in the model and, for
each alarm, it generates a fault tree, showing the minimal combinations of faults that may
trigger it. We speak about perfect isolation in case the fault tree contains only one minimal
cut set of cardinality one – in other words, the alarm may be triggered by one specific fault.

For instance, we can run fault isolation as follows.

Steps

• Load the model system fdir.slim in the GUI

• Click on the FDIR tab and select the Fault Isolation Analysis pane

• Set the value of SAT Bound to 20

• Click the Run Fault Isolation button; the analysis produces three fault trees (see Fig-
ure 7.8)

• Select the first row, the one having root.sc mon.data #alarm battery in column Alarm

• Click the Show Fault Tree button; the fault tree in Figure 7.9 appears.

November 7, 2018 COMPASS Toolset Tutorial 66

As the reader can see, we have perfect isolation for the alarms alarm_battery1 and
alarm_battery2, but not for the alarm alarm_battery.

Figure 7.8: Fault Isolation Analysis for example system fdir.

Figure 7.9: Fault Tree generated by Fault Isolation Analysis for the alarm battery alarm.

November 7, 2018 COMPASS Toolset Tutorial 67

7.5.3 Fault Recovery Analysis

Fault recovery analysis is similar in spirit to model checking. It is possible to write a property
representing recoverability of the system, and to check it against the model.

For instance, let us verify the following property: Battery low responded by reconf.
It states that whenever either battery is in state low, it will trigger a re-configuration of the
system into one of the secondary modes.

Steps

• Load the model system fdir.slim in the GUI

• Open the File menu and load the properties contained in file
examples/battery sensor/system fdir.propxml

• Click on the FDIR tab and select the Fault Recovery Analysis pane

• On the Properties pane, select the property Battery low responded by reconf

• Expand the element Model Checker Options, select SAT engine and set the SAT Bound
to 30

• Click the Run Fault Recovery button; the property is true up to the selected bound (see
Figure 7.10).

Figure 7.10: Fault Recovery Analysis for property Battery low responded by reconf.

November 7, 2018 COMPASS Toolset Tutorial 68

7.6 Diagnosability Analysis

Diagnosability analysis is a fundamental step to investigate the degree of observability of a
given system. Given a condition to be diagnosed (called diagnosability condition), diagnos-
ability analysis asks whether the system has enough observables to be able to carry out the
diagnosis. In other words, diagnosability analysis checks whether there exists a diagnoser that
is capable of carrying out the diagnosis, using the available observations.

The diagnosability problem is different from the one of building the diagnoser itself. In
this tutorial, for convenience, we illustrate diagnosability analysis at this point, in such a
way that the user is already familiar with the problem of building a diagnoser and with the
properties that are required from it. However, notice that typically, diagnosability analysis
is performed earlier in the design process, before designing the actual diagnoser – the system
being diagnosable may be seen as a precondition to build such a diagnoser.

The level of observability can be thought as the set or sensors that are available in the
system – the idea is that, having more sensors implies potentially increased diagnosis capabil-
ities, but also may increase the cost of building the system. Diagnosability analysis may help
the designer to address the problem of identifying the sensors that are needed to implement
FDIR for a specific systems. Also, it may help the designer to investigate the trade-off between
diagnoser effectiveness and costs.

As an example, we check diagnosability analysis for the condition B1_LOW (battery1 level
is low). We do it as follows.

Steps

• Load the model system fdir.slim in the GUI

• Open the File menu and load the properties contained in file
examples/battery sensor/system fdir.propxml

• Click on the FDIR tab and select the Diagnosability Analysis pane

• On the Properties pane, select the property B1 LOW

• Set the SAT Bound to 30

• Click the Run Check button; No counterexample is found – indeed this condition is
diagnosable (see Figure 7.11).

In a similar way, the user can verify that also the condition B1 FAULT is diagnosable.
If we try with, instead, the condition S1_FAULT (sensor1 is faulty), we get a counterexam-

ple. (see Figure 7.12) Indeed, we have no observables in the model that we can use to detect
a sensor fault. (Notice that the sys.is_alive signal being observable does not help, since a
failure of a single sensor will not trigger it).

A counterexample to diagnosability is shown as a pair of traces – see Figure 7.13. The pair
of traces represents an execution of the so-called twin plant, that is, two copies of the system
running in parallel, synchronously, that are observationally indistinguishable. In other words,
the two traces represent two different executions of the system that cannot be distinguished
(they have the same values for the observables) but such that the diagnosability condition is
true in one of them but not in the other. In this example, in the first trace sensor1 has failed

November 7, 2018 COMPASS Toolset Tutorial 69

Figure 7.11: Diagnosability Analysis for property B1 LOW.

Figure 7.12: Diagnosability Analysis for property S1 FAULT.

whereas in the second trace it is not failed, however there is no observable that can be used
to distinguish the two situations.

7.7 Using TFPGs for Diagnosis

Timed Failure Propagation Graphs (compare Section 5.12) can be used as a model for diag-
nosis. The monitored discrepancies, that we mentioned in Section 5.12, represent conditions

November 7, 2018 COMPASS Toolset Tutorial 70

Figure 7.13: Diagnosability counterexample for property S1 FAULT.

that are observable, whereas non-monitored discrepancies represent conditions that are not
observable.

A TFPG model can be analyzed in terms of diagnosability effectiveness – that is, as a
model for diagnosability. The failure modes and the propagation paths in the TFPG are
analyzed, in order to check whether the given monitoring information is sufficient to detect
the failure modes.

We can run diagnosability effectiveness analysis as follows.

Steps

• Load the model system fdir.slim in the GUI

• Open the File menu and load the TFPG contained in file
examples/battery sensor/system.txml

• Click on the TFPG tab and select the Effectiveness Validation pane; expanding the
element Model Checker Options, Use BDD is selected

• Click the Run Effectiveness Validation button; the pane is filled with the results as shown
in Figure 7.14

The result can be interpreted as follows. Gen1 off is diagnosable (using the B1 LOW
discrepancy) in modes Primary and Secondary1 but not in mode Secondary2. Indeed, in
mode Secondary2, the first battery is not discharging, since it is disconnected from the sensor.
Similarly for Gen2 off. On the other hand, Sens1 off and Sens2 off are not diagnosable in any
mode, since there is no monitoring information that can be used to detect such faults.

November 7, 2018 COMPASS Toolset Tutorial 71

Figure 7.14: Effectiveness Validation for example system fdir.

Chapter 8

Contract-Based Design

A SLIM model is a component-based description of the system: component types define the
interfaces, component implementations define the internal structure and recursive decompo-
sition in terms of other components, and the system is the root of such decomposition tree.
Contract-based design allows to enrich this component-based specification with contracts,
which specify the properties that each component assumes satisfied by the environment where
it is instantiated and the properties must be guaranteed in response by any component im-
plementation.

In this chapter, we explain how to specify contracts with SLIM and how to use COMPASS
to perform contract-based analysis such as checking the contract refinement and generating
hierarchical fault trees from the contract specification.

8.1 Contracts Specification

The first step is to specify contracts in the SLIM model. Contracts can be specified using
the GUI or directly in the SLIM model. Let us define a contract for the system component
of the system discrete example using the GUI. As before, we want to specify that the
system is always alive without assumptions on the environment, that is, the atomic proposition
sys.is_alive is always true. We do so as follows.

Steps

• Load the model as shown in Section 4.4.1

• Click on the Properties tab; the Requirements pane is shown

• On the left, select the component System

• Click on the Contracts sub-pane

• Click the bottom-most Add button; specify a name for the contract; leave the assumption
true; replace the guarantee true with the property “always is alive=true as shown
in figure 8.1

• Click the Save button; the name of the properties appears in the bottom-most pane,
and a “(1)” is shown next to the name System on the left to specify that one property
has been added for that component (see Figure 8.2)

72

November 7, 2018 COMPASS Toolset Tutorial 73

Figure 8.1: Adding the contract system always alive for the system discrete example.

Figure 8.2: Contracts pane after the contract system always alive has been added.

You can also specify the contracts directly in the SLIM model. Let us now consider the
system contracts example, which already contains a full specification of contracts for the
different components. So, for example Figure 8.3 shows the battery sensor model with two
contracts specified on the System component.

November 7, 2018 COMPASS Toolset Tutorial 74

...

system System

features

is_alive: out data port bool;

properties

SLIMpropset::Contracts => ([Name => "alive";

Assumption => "true";

Guarantee => "always(is_alive)";

],

[Name => "delay";

Assumption => "true";

Guarantee => "(always (is_alive)) or

(time_until(fall(is_alive)) >=4))";]);

end System;

...

Figure 8.3: Battery sensor model with two contracts specified on the System component.

8.2 Contracts Validation

Once the contracts have been specified, we can validate them from the Validation GUI. The
validation consists in a series of consistency or entailment checks, performed just to increase
our confidence in the correct formulation of the properties in the contracts. For example, in
the above example, we can check if the guarantee of the contract alive entails the guarantee
of the contract delay, as one would expect since the latter is weaker. We do so as follows.

Steps

• Load the model system contracts.slim as shown in Section 4.4.1

• Click on the Validation tab

• On the left, select the component System

• Click on the Validation sub-pane

• Select Assertion as type of check

• Select klive as algorithm (to have a proof since we do not expect counterexamples)

• Select alive.GUARANTEE as Properties

• Select delay.GUARANTEE as Possibility/Assertion

• Click the top-most Run button

• The tool reports that the assertion is true, as shown in Figure 8.4.

As additional check, we can verify that the contracts specified in the System component
and its subcomponents are consistent. We do so as follows.

November 7, 2018 COMPASS Toolset Tutorial 75

Figure 8.4: Proved that the property alive.GUARANTEE entails the property delay.GUARANTEE

of the system contracts example.

Steps

• Continuing from the previous steps, we already loaded the model system contracts.slim

and we are in the Validation tab, Validation sub-pane, for the System component

• Select Consistency as type of check

• Select All Contracts in the Properties pane

• Click the top-most Run button

• The tool provides a trace witnessing the consistency of the contracts as shown in Figure
8.5.

The Validation tab offers also the possibility of running a Tightening check; we refer to
section 9.2.3 in the user manual for an explanation of this feature.

November 7, 2018 COMPASS Toolset Tutorial 76

Figure 8.5: Proved that the properties in all contracts of System component in the
system contracts are consistent.

8.3 Specification and Verification of a Contract Refine-

ment

Once we validated the contracts, we can proceed by verifying that their refinement is correct.
The refinement is specified in the model as shown in Figure 8.6.

We check the refinements as follows.

Steps

• Continuing from the previous steps, we already loaded the model system contracts.slim

and we are in the Validation tab

• Click on the Contract Refinement sub-pane

• Select Add fairness assumption on component execution

• Select klive as algorithm (to have a proof since we do not expect counterexamples)

• Click the top-most Run button

• The tool reports that the refinements are correct, as shown in Figure 8.7.

November 7, 2018 COMPASS Toolset Tutorial 77

...

system implementation System.Imp

subcomponents

...

connections

...

properties

SLIMpropset::ContractRefinements => (

[Contract => "alive";

SubContracts => ("sensor1.reading", "sensor2.reading",

"psu1.power", "psu2.power",

"switch.switch", "or_readings.or_gate");

],

[Contract => "delay";

SubContracts => ("sensor1.reading", "sensor2.reading",

"sensor1.delay", "sensor2.delay",

"psu1.power", "psu2.power",

"psu1.delay", "psu2.delay",

"switch.switch", "or_readings.or_gate");

]);

end System.Imp;

...

Figure 8.6: Contracts refinement in the System component implementation of the
system contracts model.

8.4 Generating Hierarchical Fault Tree from Contracts

Finally, we exploit the contracts to generate a hierarchical fault tree showing, at different
levels of the refinement, the possible combination of failures subcomponents and environment
(meant as not fulfillment of the contract guarantee and assumption) leading to the failure of
the parent component. We do so as follows.

Steps

• Continuing from the previous steps, we already loaded the model system contracts.slim

• Click on the Safety tab

• Click on the Hierarchical Fault Tree Generation sub-pane

• Select Add fairness assumption on component execution

• Select klive as algorithm

• Click the top-most Run button

• Once the analysis is completed the View button gets enabled; click it.

November 7, 2018 COMPASS Toolset Tutorial 78

Figure 8.7: Proved that the contract refinements of the system contracts example are cor-
rect.

• The tool reports two fault trees, one for each property. In Figure 8.8 is shown the one
of the contract alive.

Figure 8.8: Hierarchical Fault Tree generated from the contract refinements of
system contracts.

Chapter 9

Hints and Tips

This section contains a list of recommendations that will help the user make the best of the
COMPASS toolset and address the most common issues and pitfalls. It covers modeling in
SLIM, running the toolset, and perform analyses using COMPASS.

9.1 Modeling

Avoid deadlocks A deadlock is a state in a model specification, that does not have any
outgoing transition. Deadlocks should be avoided, since they may cause verification results
that are not trustable, for instance in model checking (compare Section 9.3). The presence
of deadlocks in a specification may indicate a behavior that was not intended by the modeler
(e.g., a missing transition in a transition system, or an inconsistency between transitions of
different components that move synchronously). Deadlock checking analysis can be used to
inspect a model for deadlocks.

Avoid Zeno cycles and timelocks A time lock is an example of deadlock that may arise
in timed models, as a consequence of inconsistencies in mode triggers, invariants or guards,
or as a result of communication of different components. A Zeno cycle refers to system
computations involving an infinite number of discrete (i.e., not timed) transitions steps within
a bounded period of time. Both Zeno cycles and timelocks should be avoided, since they may
cause verification results that are not trustable. COMPASS offers Zeno analysis to check a
model for zenoness. Moreover, Section 5.1.1 of the user manual contains modeling advice and
sufficient conditions to avoid Zeno cycles and timelocks.

Always bound clocks Clocks that grow arbitrarily large should be avoided, whenever
possible, since they may complicate verification. For instance, in fair model checking, the
model checker looks for counterexamples that may be extended to an infinite fair path, and
can be represented using loops. A clock that grows arbitrarily prevents the existence of such
counterexamples. The modeler should ensure that clocks are reset at least once on each cycle
of a transition system (compare Section 5.1.1. in the user manual). COMPASS also offers
Time Divergence analysis to check whether all clocks are bounded.

79

November 7, 2018 COMPASS Toolset Tutorial 80

9.2 Running the Toolset

Quick start Section 3 of the user manual explains in detail how to obtain a copy of the
toolset and the pre-requisites and instructions about how to install it. COMPASS is also
distributed, for convenience, pre-installed on a self-contained virtual machine. Section 4.3 in
this document provides a quick start about how to run the toolset using the GUI.

Using the command-line interface In addition to the GUI, COMPASS also comes with
a command-line interface that can be used to run batch jobs. The command-line interface is
based on a set of python scripts that expose the verification capabilities of the toolset (several
options are available). The command-line scripts are explained in detail in Appendix A of the
user manual.

Interpreting errors and error messages Error messages are provided either in the main
window of the COMPASS toolset (see “Output Console”, tabs “Compiler” and “Logging”) or
in contextual sub-windows or tabs that are local to specific analyses, or in pop-up windows.
Generally, error messages are self-explanatory, and they are documented in the user manual.
Compiler errors are often due to syntactic errors in models, or semantic rules that are violated;
the latter are usually reported along with a pointer to the syntax/semantics document where
they are documented. The logging provides a low-level report of the calls that have been
made to the underlying solving engine; pointers to console output produced by this engines
are included, however their inspection requires expertise. Bugs, undocumented error messages
and other run-time errors (e.g., run-time exceptions) may be reported to the COMPASS staff
using the channels described in Section 10 of the user manual.

Using time and memory limits It is possible to limit the resources (time and memory)
that are available to run analysis tasks. It the time and/or memory bound is exceeded, the
analysis is terminated automatically. The “Processes Monitor” can be run from the View
menu, item Processes, and it can be used to view the set of running processes and set time
and/or memory limits.

9.3 Analysis

The following provides some hints towards to use of various COMPASS analysis tools. In
particular, some if the parameters that need to be set by the user are discussed here. Aside
form these hints, more details can be found in Section 9 in the user manual.

Selecting a verification engine COMPASS provides different verification engines, that
often are provided for the same activity. For instance, model checking can be executed with
the BDD-based engine, or the SAT engines (BMC, klive). The same applies to other activities,
such as fault tree generation, which also provided the SMT-based ParamIC3 engine. Some
engines may have restrictions, for instance the BDD-based engine is only available for discrete
models. Other engines such as SAT may be inconclusive or may perform verification up to
a given bound (e.g., “The property is true up to bound . . . ”). Different engines may have
different performances. The engine that often performs best in practice is selected as default

November 7, 2018 COMPASS Toolset Tutorial 81

engine, but other engines may be tried. We refer to Section 9.4.4 of the user manual for an
in-depth discussion of the pros and cons of the different engines. For the selection of the SAT
bound, see also next item.

Choosing a verification bound The SAT engine provides the BMC-based and klive-
based verification algorithms. We refer to Section 9.4.4 of the user manual for a more detailed
explanation. Choosing a bound may impact the outcome of the verification task. A “. . . true
up to bound . . . ” outcome means that the verification engines only explored the state space
up to the given bound – corresponding to the maximum length of the execution traces that
have been explored. Choosing a higher bound may yield more accurate results, but may
also increase the analysis time. Sometimes, increasing the bound may allow the engine to
complete the analysis and produce a conclusive result. In general, there is no rule of thumb in
choosing the SAT bound. It is useful to run simulations of the model under analysis, in order
to understand how long are the execution traces that are to be analyzed: the SAT bound
should be as long as the length of such traces. Similar considerations hold for the bounds for
the klive routines – more details can be found in Section 9.4.4 of the user manual.

Probabilistic Analysis versus Simulation For performability, both IMC analysis and
Model simulation are available, however both have their specific use cases. First and foremost,
the meaning of their output differs: whereas for analysis the value is guaranteed to be the actual
probability, for simulation an error is possible (the magnitude of which can be controlled).
However, analysis can be much more expensive to perform, and in some cases is not possible
– in particular for timed/hybrid models, limiting the choice to simulation. Therefore, the
recommendation is to use analysis for models that are not too large, or for which the results
have to be highly accurate, and simulation for those where this is not possible or required. In
particular, quick prototyping can be performed more easily with simulation.

Performability Analysis versus Fault Tree Evaluation Both performability analysis
and fault tree evaluation strive towards the same goal: quantifying the reliability of the system.
The main difference between the two is that the prior calculates this on the input model
directly, whereas the latter does so via an abstraction in the form of a fault tree. Ideally the two
match, but this is not always true. Fault trees lend themselves very well to describe the possible
propagation of faults in the model and make their effect much easier to understand, but cannot
capture the full behavioral aspects of the model, something that performability analysis does
take into account. Therefore, if simply the reliability needs to be known, performability
analysis will provide the closest representation, but for better understanding of the model, a
fault tree provides a better representation.

Model-Based vs. Contract-Based Fault-Tree Generation Fault trees can be gener-
ated either by specifying the error model and fault-injection or by specifying the contract
refinement. The results are complementary as the first focused on the faults manually spec-
ified by the user, while the second has a predefined notion of failure, i.e., the inability of a
component to ensure the guarantee or the inability of a component environment to ensure
the assumption. The first produces a flat fault tree, while the second produces a hierarchical
fault tree structured along the architectural decomposition. The user may be interested in

November 7, 2018 COMPASS Toolset Tutorial 82

performing both or either of the analyses. The choice depends on the availability of the fault
injection (for the flat fault tree) and the contract specification (for the hierarchical fault tree).

Bibliography

[1] Marco Bozzano, Alessandro Cimatti, Joost-Pieter Katoen, Viet Yen Nguyen, Thomas
Noll, and Marco Roveri. Safety, dependability, and performance analysis of extended
AADL models. The Computer Journal, 54(5):754–775, 2011.

[2] SLIM 3.0 - Syntax and Semantics. Technical report, COMPASS Consortium, 2016. Ver-
sion 1.2.

[3] COMPASS Toolset User Manual. Technical report, COMPASS Consortium, 2016.

[4] Space engineering: System engineering general requirements. ECSS Standard E-ST-10C,
European Cooperation for Space Standardization, March 2009.

[5] Space product assurance: Failure modes, effects (and criticality) analysis
(FMEA/FMECA). ECSS Standard Q-ST-30-02C, European Cooperation for Space
Standardization, March 2009.

[6] Space product assurance: Availability analysis. ECSS Standard Q-ST-30-09C, European
Cooperation for Space Standardization, July 2008.

[7] Space product assurance: Dependability. ECSS Standard Q-ST-30C, European Cooper-
ation for Space Standardization, March 2009.

[8] Space product assurance: Fault tree analysis – adoption notice ECSS/IEC 61025. ECSS
Standard Q-ST-40-12C, European Cooperation for Space Standardization, July 2008.

[9] Space product assurance: Safety. ECSS Standard Q-ST-40C, European Cooperation for
Space Standardization, March 2009.

[10] Architecture Analysis and Design Language (AADL) V2. SAE Draft Standard
AS5506 V2, International Society of Automotive Engineers, March 2008.

[11] Architecture Analysis and Design Language Annex (AADL), Volume 1, Annex E: Error
Model Annex. SAE Standard AS5506/1, International Society of Automotive Engineers,
June 2006.

83

	Introduction
	Terminology
	The COMPASS Approach
	Space System Engineering
	The COMPASS Approach

	COMPASS as a Model Checker
	Writing the First Model
	Adding More States

	Adding Delays
	Running the Toolset
	Loading and Saving Models
	Loading Models
	Saving Models

	Simulating a Model
	Writing a Property
	Saving Properties
	Loading Properties
	Model Checking a Property
	Deadlock Checking

	Dealing with Faults
	Writing an Error Model
	Adding Probabilities in Error Models
	Modeling Fault Injections
	Loading and Saving Error Models and Fault Injections
	Model Extension
	Simulating the Extended Model
	Model Checking the Extended Model
	Fault Tree Analysis
	Fault Tree Evaluation
	Fault Tree Verification
	Failure Mode and Effects Analysis
	Modeling Fault Propagation: TFPGs
	Editing TFPGs
	Loading and Saving TFPGs
	Editing TFPG Associations
	Loading and Saving TFPG Associations
	TFPG Behavioral Validation
	TFPG Synthesis

	Probabilistic Verification
	Making the Model Reactive
	Probabilistic Properties
	Performability Analysis
	Performability Simulation

	Fault Detection, Identification and Recovery
	Modeling Observables
	Modeling a Controller
	Safety Analysis Revisited
	Modeling Alarms
	FDIR Effectiveness Analysis
	Fault Detection Analysis
	Fault Isolation Analysis
	Fault Recovery Analysis

	Diagnosability Analysis
	Using TFPGs for Diagnosis

	Contract-Based Design
	Contracts Specification
	Contracts Validation
	Specification and Verification of a Contract Refinement
	Generating Hierarchical Fault Tree from Contracts

	Hints and Tips
	Modeling
	Running the Toolset
	Analysis

